Selected System Redesign and Analysis

The Pennsylvania State University Architectural Engineering Senior Thesis

Bucks County Justice Center
 Doylestown, PA

Joshua Lange
Lighting/Electrical
Thesis Adviser: Dr. Richard Mistrick
Electrical Adviser: Gary Golaszewski

4/8/2015

Bucks County Justice Center
 Doylestown, PA

Architecture

This building is in the shape of a ' V ' with the main entrance located at the apex facing east. (see Image 1 to the left) and is occupied by courtrooms, offices, holding cells, secure parking, and other supporting spaces. Part of a historic building on the site will be incorporated into the new structure. (see the bottom left of Image 2 below) The exterior façade is curtain wall with precast concrete panels faced with brick and terracotta. Vision, translucent, spandrel, and fritted glass are utilized based on the orientation of the window and the use of the space.

Lighting and Electrical

A 3200A 480/277V unit substation, located in the penthouse, is supplied by a 2000 kVA transformer with a 34.5 kV primary. Four $480 / 277 \mathrm{~V}$ vertical bus ducts distribute normal power from the penthouse to the dimmer panels, lighting and distribution transformers. $120 / 208 \mathrm{~V}$ is used for receptacles and small equipment. A $1000 \mathrm{KW} / 1250 \mathrm{kVA}$ diesel generator provides emergency power. Interior lighting is predominantly linear fluorescent fixtures with LED accent lighting. The courtroom lighting is controlled through central dimming panels located on each floor.

Mechanical

The chilled water and hot water plants are located in the penthouse. There are seven water based variable volume air units. Pressurization fans are provided for each stair tower. Dedicated heat pumps with a water/ glycol loop are provided for telecom/data closets and server rooms. CO monitoring is provided for the garage with exhaust fan control.

Structural

The building is a steel framed structure supported by spread footings and strip footings. The columns, beams, and girders are primarily wide flange. A braced frame lateral system is utilized. The floor system is a concrete slab with welded wire reinforcing on metal deck with composite beam framing.

Image 2 - Exterior rendering of the south wing

Owner: County of Bucks
General Contractor: Ernest Bock \& Sons, Inc.
Architect: HOK
Civil: Carroll Engineering Corporation
MEP: H. F. Lenz
Structural: Harman Group
Security and Code Consulting: Brinjac Engineers Telecom, A-V, and Acoustics: Acentech Incorporated
Elevators: John Van Deusen
Lighting: Tigue Lighting
Fall Protection: Lerch Bates Incorporated

Table of Contents

Thesis Abstract 1
Table of Contents 2
Disclaimer 4
Executive Summary 5
Acknowledgements. 6
Introduction 7

1. Part 1 - Lighting Depth 15
1.1 Introduction 15
1.2 Main Plaza 19
1.2.1 Introduction 19
1.2.2 Criteria 19
1.2.3 Design 21
1.3 Main Lobby 1000 24
1.3.1 Introduction 24
1.3.2 Design Criteria 26
1.3.3 Final Design 27
1.4 Open Office 2520 33
1.4.1 Introduction 33
1.4.2 Design Criteria 34
1.4.3 Final Design 35
1.5 Ceremonial Courtroom 4100 40
1.5.1 Introduction 40
1.5.2 Design Criteria 42
1.5.3 Final Design 43
2. Part 2 - Electrical Depth 50
2.1 Introduction 50
2.2 Distribution System Analysis/Redesign 51
2.3 Short Circuit Analysis 52
2.4 DC Distribution 55
3. Part 3 - Acoustical Breadth/MAE Depth 56
3.1 Introduction 56
3.2 Acoustical Breadth: Reverberation Time (RT) Analysis 57
3.2.1 Introduction 57
3.2.2 Original Design 57
3.2.3 Design Criteria 59
3.2.4 Final Design 60
Joshua Lange
3.3 Acoustical MAE Depth: Sound Reinforcement System Analysis 62
3.3.1 Introduction 62
3.3.2 Model 63
3.3.3 Results 64
3.3.4 Conclusion 66
4. Part 4 - Mechanical Breadth: Combined Heat and Power (CHP) Analysis 67
4.1 Introduction 67
4.2 Analysis. 67
4.3 Conclusion 71
Summary and Conclusion 72
Appendix A - Supporting Material for Lighting DepthAppendix A-1 - Light Loss Factor CalculationsAppendix A-2 - Lighting Power Density CalculationsAppendix A-3 - Luminaire Specification Sheets
Appendix B - Supporting Material for Acoustical Breadth
References

Disclaimer

While great efforts have been taken to provide accurate and complete information in this report, please be aware that this report is strictly an academic exercise. Modifications and changes related to the original building designs and construction methodologies for this senior thesis project are solely the interpretation of Joshua Lange. Changes and discrepancies in no way imply that the original design contained errors or was flawed. Differing assumptions, code references, requirements, and methodologies have been incorporated into this thesis project; therefore, investigation results may vary from the original design.

Executive Summary

The following report presents several analyses of various systems of the Bucks County Justice Center (BCJC) which is a 273,000 SF courthouse located in eastern Pennsylvania. This report has five major sections: a lighting depth, an electrical depth, an acoustical breadth, an MAE acoustical breadth, and a mechanical breadth.

The lighting depth of this report details the lighting redesign for four unique spaces in the BCJC. The criteria for these designs included qualitative criteria as well as illuminance values and ratios from the IES Handbook and control and LPD requirements from ASHRAE. All of the spaces met the control requirements, all of the spaces have LPD's that are significantly below the maximum, and all of the spaces are within reasonable conformance with the illuminance value and ratio targets.

The electrical depth analyzed the effects of the lighting depth on the electrical distribution system, studied the fault current available at various locations throughout the building, and gives an analysis of the feasibility of a DC distribution system being used to increase electrical efficiency.

The acoustical breadth of this report gives an analysis of the RT of Ceremonial Courtroom 4100, establishes a target RT, and makes recommendations to bring the RT into closer conformity with the target.

The MAE acoustical breadth gives an analysis of the influence of the sound reinforcement system in Ceremonial Courtroom 4100 on speech intelligibility. This analysis looks at both SPL and STI to determine the effects of the system. The system greatly improves the SPL distribution as well as greatly increasing STI, but STI still only has a value that is on the low end of "good".

Finally, the mechanical breadth examines the practicality of a CHP system being used for this building. This analysis revealed that the building does not have a high enough consistent thermal load to make a CHP system feasible. Because of this the payback period is much longer than is acceptable to most investors.

Acknowledgements

I would like to thank Mr. Gerald Anderson for allowing me to use the Bucks County Justice Center as my thesis building.

I would like to thank Mr. Scott Mack and the team at H.F. Lenz for their help in selecting the BCJC as my thesis building, providing me with project documentation, and for providing consultation at various times throughout this project.

I would like to thank the following for their guidance on this project:
Dr. Richard Mistrick
Mr. Gary Golaszewski
Dr. Michelle Vigeant
Dr. James Freihaut

Thank you all for your assistance in making this report a reality!

Introduction

General Information

Project Name: Bucks County Justice Center
Location: Doylestown, PA
Owner: Bucks County
Occupancy: Assembly, Business, Institutional, Storage
Size: 272,856 SF Gross Square Footage IBC 2006
Levels: 7 stories above grade (including the penthouse)
2 stories below grade

Project Team

Owner/tenant: County of Bucks
General Contractor: Ernest Bock \& Sons, Inc.
CM: N/A
Architect: HOK
Civil: Carroll Engineering Corporation
MEP: H. F. Lenz
Structural: The Harman Group
Security and Code Consulting: Brinjac Engineers
Telecommunications, Data, Audio Visual, and Acoustic: Acentech Incorporated
Elevators: John Van Deusen
Lighting: Tigue Lighting
Fall Protection: Lerch Bates Incorporated

Construction Information

Construction Start: Ground Breaking July 2011
Grand Opening: January 10, 2015
Cost: \$84 million total project cost
Project Delivery: Design-Bid-Build

Architecture

This project is the location for the county courthouse including courtrooms, offices, holding cells, and other supporting spaces. Part of an existing historic building on the site was incorporated into the new structure (please see the historical requirements section below). The building is in the shape of a ' V ' with the main entrance located at the apex. The building is across the street from the existing courthouse with the main entrance facing the existing building. Two sides of the building border streets with the remaining sides being adjacent to parking. See Figure 1 and Figure 2 below.

Figure 1 - Site Plan

Figure 2 - Exterior Render of the Main Entrance

Codes:

International Building Code 2006
ICC Electrical Code 2006
International Energy Conservation Code 2006
International Fire Code 2006
International Fuel Gas Code 2006
International Mechanical Code 2006
International Plumbing Code 2006
ADA Accessibility Guidelines for Buildings and Facilities
ANSI/ASME A17.1 Safety Code for elevators and Escalators, as adopted by the Commonwealth of Pennsylvania's, Department of Labor and industry, Division of Elevators

Zoning

Doylestown Borough O District zoning (O District is designated for Office use)

Historical

A portion of an armory that was built on the site in 1909 was incorporated into the building. The portion is located along Shewell Avenue and consists of two exterior walls and an interior fireplace. Figure 3 below details the portion of the existing building that was incorporated into the new building.

Figure 3 - Existing Structure to Remain

Building Enclosure

Exterior Wall Materials

For the first two above grade exterior walls, the primary finish material is brick (with a running bond) clad precast concrete panels with decorative profiled precast concrete below the windows and acid etched precast concrete panels for the window sills. See Figure 4 below. The rest of the above grade exterior walls use terracotta clad precast panels as the primary finish material and continue the typical use of decorative profiled precast concrete below the windows. On some of the walls with smaller windows a single course of soldier bricks on precast concrete is added at each floor.

Figure 4 - Exterior Render

Windows

The windows are a curtainwall system with several types of exterior glazing in order to achieve a uniform exterior façade while not impeding on the interior uses of the building. The glazing types include vision glass, translucent glass, spandrel glass, and fritted glass. All of the glazing types have a low-E coating on one of the surfaces.

Roofing

The main roofing type for this project is an inverted roof membrane assembly (IRMA) with a stone ballast and four inches of rigid insulation as shown in Figure 5 on the next page.

Figure 5 - Roof Detail

Sustainability

The project did not pursue LEED certification. However, the design still incorporates various features to increase efficiency. The design includes networked automated control of the mechanical systems and selected lighting systems in order to maximize efficiency. In order to minimize solar gains while still allowing for daylighting glazing with a low E coating, low SHGC and a fairly high VLT were used. Additionally, high efficiency plumbing fixtures were used throughout the building. Including dual flush water closets, ultra-low flow (1 pint per flush) urinals, 0.5 GPM sinks with aerators, and 2.0 GPM showerheads.

Primary Engineering Systems

Construction Management

The delivery method for the project was design-bid-build. The primary designer and general contractor are HOK and Ernest Bock \& Sons, Inc. respectively. The project has a cost of approximately $\$ 84$ million and a construction duration of about 3.5 years. Access to the site is somewhat constrained by surrounding buildings, but there is substantial frontage for access to the site. The main site entrance was from Union Street with alternate entrances from North Main Street and North Broad Street. After the existing parking garage was demolished in the early stages of construction there was a large amount of future parking lot that provided space for construction staging. The integration of the wall from the existing building was a significant logistical challenge.

Electrical/Lighting

The main electrical system utilizes a 3200 A unit substation that is fed by a 2000 KVA building transformer with a 34.5 KV primary and a 277/480 secondary. Four 800 A 277/480 V vertical busses distribute normal power throughout the building. In general, each floor has two electrical rooms with a 277/480 V and a 120/208 V panel. The 277/480 V panel feeds the 120/208 V panel through a transformer.
A 1000 KW generator provides the emergency and backup power. There are four sets of loads on the generator; fire pump, life safety, emergency, and critical. The fire pump, life safety, and emergency are all code required loads. The critical loads are optional backup loads. The generator directly feeds the ATS for the fire pump and the remaining ATS's are fed from a 1600 A 480/277 V distribution switchboard. All of the optional backup loads except for the heat pumps are fed from a 160 KVA/144 KW UPS. Interior lighting is predominantly linear fluorescent luminaires with LED accent lighting. Recessed indirect linear florescent luminaires are used for the private offices, conference rooms, and corridors. Direct/indirect linear florescent pendants are used in the open office areas. Various luminaires including CFL downlights and linear florescent wall washers and strip lights are utilized in the courtrooms. For lighting control, there are various types of low voltage push button stations, occupancy sensors, and daylight sensors that are networked with control units. For the courtrooms there are central dimming panels located on every other floor. For the conference rooms, offices, and other spaces control packs with four zones are utilized. All of the lighting controls are tied into the central lighting management system.

Mechanical

There are nine water based AHU's for the building. Seven are located in the penthouse and two are located on level B2. Two of the AHU's are fixed volume dedicated outdoor air units and the rest are variable volume. The AHU's range in size from 5,500 CFM to 40,000 CFM. Five of the AHU's include energy recovery wheels. Chilled water is supplied by two 330 ton air cooled chillers that interface with two 615 GPM cooling towers. Hot water is supplied by five gas boilers each with a 2000 MBH input. 18 water source heat pumps intended for 24/7 cooling are provided for the telecom/data closets, server rooms, and some mechanical rooms. These units are served by a dedicated water/glycol loop.
A CO monitoring system with exhaust fan control is provided for the parking area on level B2. Makeup air is provided by a 16,000 CFM makeup air unit with hot water heating.
Pressurization fans are provided for each stair tower and the elevators. The fans are all around 19,000 CFM.
Variable volume boxes are utilized for the various heating and cooling zones

Structural

The building is a steel framed structure supported by spread footings and strip footings. The spread footings range in size from $4^{\prime}-0 "$ x $4^{\prime}-0^{\prime \prime} \times 2^{\prime}-0^{\prime \prime}$ to $9^{\prime}-0 " \times 9^{\prime}-0^{\prime \prime} \times 3^{\prime}-6$ " with the most common size for interior supports being $7^{\prime}-6 " \times 7^{\prime}-6 " \times 3^{\prime}-1^{\prime \prime}$ and the most common size for exterior supports being $4^{\prime}-0^{\prime \prime} \times 4^{\prime}-0 "$ x $2^{\prime}-0$ ". The strip footings are typically $3^{\prime}-0$ " deep.
The vast majority of the columns are wide flange, but there are also some hollow structural section columns and standard steel pipe columns. The wide flange steel columns range in size from W14x43 to W14x455. The hollow structural section columns range in size from HSS8.625×0.375 to HSS14×0.625. The standard steel pipe columns are PIPE8"STD.
The floor framing is wide flange beams and wide flange girders. A typical floor bay utilizes $40^{\prime}-0$ " W 18×40 beams with 24 shear studs and a $11 / 2^{\prime \prime}$ camber and $30^{\prime}-0$ " W21x62 girders with 38 shear studs. However, there are numerous non typical bays that utilize a wide range of beam sizes.
The floor system is 3 " composite deck with composite beam framing. The typical floor thickness is $61 / 4$ " and utilizes welded wire reinforcing. A $71 / 2$ " slab is used to support the equipment in the penthouse. A 5" thick slab on grade is used for B2.
Lateral loads are resisted by braced frames and moment frames. There are eight braced frames distributed throughout the building. Wide flange beams are used in both diagonal and chevron bracing. The bases of the braced frames are anchored by either 74 " or 78 " deep mat foundations.
Additional Engineering and Engineering Support Services

Fire Protection

The fire protection system includes a fire command center, full building sprinklering, motor operated dampers, pressurized stair towers, and a fire pump. Stand pipes are provided in every stairwell. An automatic wet sprinkler system is used everywhere accept the parking garage and sally port which use a dry system.

Transportation

Vertical circulation is handled by four stair cases and nine elevators. The elevators are dedicated for the following uses: four for general purpose circulation are located in the main elevator lobby, three for prisoner transport are distributed throughout the building, one is dedicated for the judges to use, and one is for service.

Telecommunications

There is sufficient telecommunications equipment to meet the VOIP and data needs of the various offices throughout the building. There are telecommunications rooms centrally located on each floor which are used as hubs for each floor. The backbone cabling is typically 25 strand CAT 3 cable, 12 strand single mode fiber cable and 6 strand multimode fiber cable.

Audio/Visual

All of the courtrooms have an A/V system that includes cameras, microphones, speakers, amplifiers, input stations, touch panel control stations, an assistive listening system, and a projector.

Security

Access control

Both exterior and interior doors utilize electronic locks and card swipes to limit access to secure areas. In general, each door has a 120 V circuit supplied to the control pack which feeds the equipment 24 V , but for doors in close proximity a central power pack is used.

Surveillance

A thorough surveillance system is utilized throughout the building. There are glass break sensors for the windows that are accessible from the outside, door contacts on doors for sensitive areas, and video cameras for the majority of the building. The surveillance devices are fed to security servers located in the telecom rooms. There are various displays and controls for the security system located in the control rooms on level B2. For the internal and external building mounted surveillance cameras CAT 6 UTP cable is used for video and CL3 cable is used to provide low voltage power. Fiber optic cable is used for exterior surveillance cameras that are mounted away from the building.

1. Part 1 - Lighting Depth

1.1 Introduction

The lighting of four unique spaces in the BCJC was redesigned. The designs were based on the criteria that were developed in Tech Report 2. These criteria include qualitative functional aspects such as way finding and security and quantitative aspects such as illuminance levels from the IES Handbook and power density requirements from ASHRAE 90.1 2013. The completed designs are documented with lighting plans, lighting schedules, illuminance calculations, and rendered images. The four spaces are as follows:

Outdoor Space: Main Plaza
Circulation Space: Main Lobby 1000
Large Workspace: Open Office 2520
Special Purpose Space: Ceremonial Courtroom 4100

Figure 6 through Figure 9 on the following pages show the locations of the spaces.

Figure 6 - Main Plaza Location

Figure 7 - Main Lobby 1000 Location

Figure 8 - Open Office 2520 Location

Figure 9 - Ceremonial Courtroom 4100 Location

In addition to the individual criteria that are used for each space the following are criteria for all of the spaces.

CCT of $3500 \mathrm{~K}:$ A CCT of 3500 K was chosen to help with daylight mixing because of the significant amount of daylight that will penetrate many of the spaces. This CCT was used in all of the spaces to help bring uniformity to the building.

20\% reduction from ASHRAE LPD requirements: In order to create an efficient design a target reduction was set.

All luminaires have LED light sources. A light loss factor of 0.70 was used for all maintained illuminance calculations. All of the LED's have a minimum L70 of 50,000 hours and some have an L80 of 50,000 hours. This means that with an average luminaire use of 10 hours per day 5 days a week the 0.7 LLD would not occur for over 19 years. Even with a LLF of 0.7 the illuminance will most likely be significantly higher than the target for at least 10 years. However, for the completeness of this report full LLF calculations for each luminaire type are given in Appendix A-1 - Light Loss Factor Calculations.

All illuminance calculations were performed in AGI32 with a $2^{\prime}-0^{\prime \prime} \times 2^{\prime}-0^{\prime \prime}$ grid unless noted otherwise.

1.2 Main Plaza

1.2.1 Introduction

The main plaza located outside of Main Lobby 1000 connects the main entrance of the BCJC with the administration building that is located across the street. The majority of this space is hardscape.

1.2.2 Criteria

Way finding: This space leads up to the main entrance of the building and therefore providing a clear path to the entrance is important.

Safety: Ample light must be provided to discourage criminal activity and provide a sense of safety.

Both the illuminance level and illuminance ratio targets shown in Table 1 below are based on recommendations in the IES Handbook.

Table 1 - Main Plaza Illuminance Recommendations

Eh (lux)	Elevation Eh	Ev (lux)	Elevation Ev	Max:Avg	Avg:Min
4	$0^{\prime}-0 \prime \prime$	2	$5^{\prime}-0 "$	$4: 1$	$5: 1$

Control and LPD requirements are based on ASHRAE 90.12013 and are as follows:

- The allowed lighting power for Main Plaza (including the plaza area and ADA ramp) was calculated to be 976 watts. See Table 2 below for calculation.

Table 2 - Allowed Watts Calculation for Plaza and Ramp

Plaza Areas		
Allowance (W/SF)	Area (SF)	Total (W)
0.14	6171	864

Walkway <10 FT wide		
Allowance (W/lin FT)	Length (FT)	Total (W)
0.7	160	112

- Photosensor control
- Façade and landscape lighting shutoff between midnight or business closing (whichever is later) and 6 a.m. or business opening (whichever comes first)
- Non façade and landscape lighting shall have automatic control to reduce power by 30% for either the period from midnight or within 1 hour of closing (whichever comes later) and 6 a.m. or opening (whichever comes first) or during any period when no activity has been detected for a time no longer than 15 minutes

In order to limit light trespass and sky glow the requirements given in the Model Lighting Ordinance (MLO) will be considered. Lighting Zone 2 was selected for this project. The MLO requirements include a total site lumen limit of 22,428 , a maximum of 15% of the site lumens making it to the property line, and a maximum single point illuminance at the property line of 3.0 Lux. See Table 3 below for the site lumen calculation.

Table 3 - MLO Site Lumen Calculation

Site area (SF):		6171
Allowed Lumens Per SF	2.5	15428
Allowed Base Lumens		7000
Total Allowed Lumens:		
$\mathbf{2 2 4 2 8}$		

1.2.3 Design

Table 4 - Main Plaza Luminaire Schedule

Type	Description	Manufacturer	Model	Lamp	$\begin{gathered} \mathbf{C C T} \\ (\mathrm{K}) \end{gathered}$	CRI	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Life } \\ \text { (Hours) } \end{array} \\ \hline \end{array}$	Ballast	Input (Watts)	Voltage	Fixture Image
X1	EXTERIOR POLE MOUNTED TYPE 3 DOWN LIGHT TWELVE FOOT POLE, 1635 LUMEN	COOPER LIGHTING	MSA-C01-LED-E1-T3-GM	INTEGRAL	4000	70	$\begin{gathered} 60,000+ \\ >90 \% \end{gathered}$	INTEGRAL	27	277	
X2	EXTERIOR IN RAIL LIGHT THREE FOOT, 83 LMS/FT	COOPER LIGHTING	0.06.SSS.1.PMC.NR.ASYM.35K.GB3.4	INTEGRAL	3500	80	$\begin{gathered} 50,000 \\ \text { L70 } \end{gathered}$	INTEGRAL	4.14	277	

Figure 10 - Main Plaza Lighting Plan
Luminaire X 1 is mounted 12 feet above the ground. Luminaire X 2 is a $3^{\prime}-0^{\prime \prime}$ long section that is incorporated into the handrail spaced 9'-0" O.C. with the luminaires in the opposite handrail offset as to be in the center of the space that does not have a luminaire.

Table 5 - Main Plaza Target Vs Design Illuminance

Location		Eh $(\mathbf{l u x})$	Height Eh	Max:Avg	Avg:Min
Outdoor Plaza and Ramp	Target	4	$0^{\prime}-0^{\prime \prime}$	$4: 1$	$5: 1$
	Ramp	12	$0^{\prime}-0^{\prime \prime}$	$5.5: 1$	$12.4: 1$
	Plaza	7	$0^{\prime}-0^{\prime \prime}$	$2.1: 1$	$7.3: 1$

The design average illuminance and illuminance ratios are not very close to the target values, but the design provides ample illuminance for the tasks that must be performed. The majority of the plaza area is very uniform; it is just some outlying points that are causing the average to minimum ratio to be so high.

Figure 11 - Main Plaza Pseudo Color

ASHRAE control requirements were addressed as follows:

- A photosensor is used to turn off the site lighting when daylight is present
- There is no façade of landscape lighting present in the design
- A portion of the exterior site lighting accounting for more than 30% of the power is programmed to turn off between midnight and 6 a.m.

The LPD for the site is 68% below the max allowed by ASHRAE. See Appendix A-2 Lighting Power Density Calculations for the calculations.

MLO Considerations

The total installed lumens is 32% below the max allowed lumens. See Table 6 below for the total site lumen calculation. The total lumens hitting the bounding box is below 12% of the site lumens. The design exceeds the max allowed single point illuminance at a point on the property line. This occurs because the task plane goes right up to the property line so it is impossible to light the task plane and not the property line.

Table 6 - Installed Site Lumens

Luminaire	Lumens per fixture	Quantity	Total Lumens
Pole Light (C1 T3)	1635	8	13080
Rail Light	98	22	2156

1.3 Main Lobby 1000

1.3.1 Introduction

Main Lobby 1000 is approximately 3000 SF and is located on the east side of the building at the intersection of the two wings. It is double height with a second floor balcony overlooking it. The east façade is primarily glass which provides extensive daylight exposure. below shows the layout ad dimensions of Main Lobby 1000

Figure 12 - Main Lobby 1000 Layout and Dimensions

Table 7 and Table 8 below give the finish materials for Main Lobby 1000
Table 7 - Main Lobby 1000 Finish Schedule

Surface	Description	Color	Reflectance
Ceiling	Acoustical Metal ceiling $24 " \times 24 "$	-	>0.60
	Acoustical Metal ceiling $6 "$ wide	-	>0.60
	Handset Granite	Mountain Green	0.22^{*}
Wall	Paint	White	0.85
	Terracotta Wall Tile	-	-

*denotes reflectances that were calculated by AGI32 based on the manufacturers image
Table 8 - Main Lobby 1000 Glazing Types

Surface	Description	$\rho_{\text {EXT }}$	$\rho_{\text {INT }}$	ρ SOL	VLT
Windows	Vision glass	0.12	0.12	0.24	.78

1.3.2 Design Criteria

Spaciousness: This space is the main entrance of the building and should be designed in such a way as to instill a sense of awe and grandeur

Safety: This space houses the main security screening for the building and therefore the lighting must be designed to not hinder the screening process

Both the illuminance level and ratio targets given in Table 9 below are based on the recommendations in the IES Handbook.

Table 9 - Main Lobby 1000 Illuminance Recommendations

Location	Eh (lux)	Elevation Eh	Ev (lux)	Elevation Ev	Avg:Min
Security Screening	200	$3^{\prime}-0^{\prime \prime}$	200	$5^{\prime}-0 "$	$2: 1$
Lobbies near entries (day)	100	Floor	30	$5^{\prime}-0 "$	$4: 1$

The control and LPD requirements given in are based on ASHRAE 90.1 2013

Table 10 - Main Lobby 1000 LPD and Control Requirements

LPD	Local	Automatic Daylight Responsive (W/SF) Controls for Sidelighting	Automatic Full OFF	Scheduled Shutoff
0.9	REQ	REQ	ADD2	ADD2

Note: "ADD2" designates a requirement that has an option. i.e. one of the "ADD2" options must be selected.

1.3.3 Final Design

Table 11 - Main Lobby 1000 Luminaire Schedule

Type	Description	Manufacturer	Model	Lamp	$\begin{array}{\|c\|} \hline \mathbf{C C T} \\ (\mathrm{K}) \end{array}$	CRI	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Life } \\ \text { (Hours) } \end{array} \\ \hline \end{array}$	Ballast	$\begin{array}{\|c\|} \hline \text { Input } \\ \text { (Watts) } \end{array}$	Voltage	Fixture Image
R3	RECESSED CIRCULAR 6 INCH WIDE BEAM DOWNLIGHT 1500 LUMEN	COOPER LIGHTING	LD6A15DL3 ERW6A15835 6LW1LI	INTEGRAL	3500	80	$\begin{array}{\|c} 50,000 \\ \text { L70 } \end{array}$	INTEGRAL	22.4	277	
R4	RECESSED CIRCULAR 6 INCH WIDE BEAM WALL WASH 1000 LUMEN	COOPER LIGHTING	LD6A10DL3 ERM6A10835 6LM111LI	INTEGRAL	3500	80	$\begin{array}{\|c} 50,000 \\ \text { L70 } \end{array}$	INTEGRAL	14.1	277	
R7	RECESSED CIRCULAR 8 INCH MEDIUM BEAM DOWNLIGHT 5000 LUMEN	COOPER LIGHTING	LD8A502DL3 ER8A50835 8LMOLI	INTEGRAL	3500	80	$\begin{array}{\|c} 50,000 \\ \text { L70 } \end{array}$	INTEGRAL	62	277	
R8	RECESSED CIRCULAR 8 INCH MEDIUM BEAM DOWNLIGHT 3000 LUMEN	COOPER LIGHTING	LD8A302DL3 ER8A30835 8LW110LI	INTEGRAL	3500	80	$\begin{array}{\|c} 50,000 \\ \text { L70 } \end{array}$	INTEGRAL	42	277	
R9	RECESSED CIRCULAR 8 INCH WIDE BEAM DOWNLIGHT 3000 LUMEN	COOPER LIGHTING	LD8A302DL3 ER8A30835 8LW0LI	INTEGRAL	3500	80	$\begin{array}{\|c} 50,000 \\ \text { L70 } \end{array}$	INTEGRAL	42	277	
W1	WALL MOUNTED LINEAR UPLIGHT TWO FOOT, 2000 LUMENS	COOPER LIGHTING	A02-SI-A-2-LED-35K-277-S-AK12-D	INTEGRAL	3500	80	$\begin{gathered} 50,000 \\ \mathrm{~L} 70 \end{gathered}$	INTEGRAL	22.6	277	

Figure 13 - Main Lobby 1000 Lower Level Reflected Ceiling Plan

Figure 13 on the previous page and Figure 14 below show the luminaire layout for Lobby 1000. All ceiling mounted luminaires are recessed into the drop ceiling.
Coordinate the height with the architect. Wall mounted luminaire W1 is to be mounted at the center of the columns 7'-0" AFF.

Figure 14 - Main Lobby 1000 Upper Level Reflected Ceiling Plan

Table 12 - Main Lobby 1000 Target Vs Design Illuminance

Location		Eh (lux)	Height Eh	Avg:Min
Security Screening	Target	200	$3^{\prime} \mathbf{n}^{\prime \prime}$	$2: 1$
	Design	186	$3^{\prime}-0^{\prime \prime}$	$1.7: 1$
Lobbies near entries (day)	Target	100	Floor	$4: 1$
	Design	139	Floor	$3.2: 1$

Figure 15 - Main Lobby 1000 Lower Level Isoline

Figure 16 - Main Lobby 1000 Perspective 1

Figure 17 - Main Lobby 1000 Perspective from Balcony

The LPD for this design is 0.33 W/SF which is a 63% reduction from the maximum allowed LPD. See Appendix A-2 - Lighting Power Density Calculations for the calculations.

The ASHRAE controls requirements for this space were addressed as follows:
Local Control: The control station is located at the security station.
Automatic Daylight Responsive Controls for Sidelighting: Nearly the entire room is a primary sidelighted area. As a result photosensor control is provided for all of the general lighting. Continuous dimming will be used for these luminaires. The luminaires for the security screening area are not general lighting and therefore will not be photocontrolled.

Automatic Full OFF: Because this is the main security screening area for the building automatic full off would endanger the safety of the occupants so exception 2 for this requirement will be taken.

Scheduled Shutoff: Because this is the main security screening area for the building scheduled shutoff would endanger the security of the building occupants so exception 3 of this requirement will be taken.

See Figure 18 and Figure 19 on the next page for the lighting controls details.

Figure 18 - Main Lobby 1000 Lower Level Lighting Controls

Figure 19 - Main Lobby 1000 Upper Level Lighting Controls

1.4 Open Office 2520

1.4.1 Introduction

Open Office 2520 is a 1600 SF "L" shaped open office located in the southwest corner of the building. This office is typical of the open offices located throughout the building, but has significant exterior exposure on the northwest side. See Figure 20 below for the layout and dimensions of Open Office 2520

Figure 20 - Open Office 2520 Layout and Dimensions

The finish and glazing properties for Open Office 2520 are given in Table 13 and Table 14 below.

Table 13 - Open Office 2520 Finish Schedule

Surface	Description	Color	Reflectance
Ceiling	Acoustical panel ceiling $24^{\prime \prime} \times 24^{\prime \prime}$	White	0.90
Floor	Carpet Tile $24^{\prime \prime} \times 24^{\prime \prime}$	Opening Night (403674)	0.04^{\star}
Wall	Paint	Pure White (7005)	0.85

*denotes reflectances that were calculated by AGI32 based on the manufacturers image
Table 14 - Open Office 2520 Glazing Types

Surface	Description	$\rho_{\text {EXT }}$	PINT	PsOL	VLT
Windows	Vision glass	0.11	0.11	0.26	0.49

1.4.2 Design Criteria

Views/Daylight: In order to create a friendly working environment, views and daylighting should be utilized as much as possible while keeping glare to a minimum.

Community/Unity: The lighting design of this space should create a sense of community and not cause the space to feel segmented.

Both the illuminance level and illuminance ratios are based on the recommendations in the IES Handbook and are listed in Table 15 below.

Table 15 - Open Office 2520 Illuminance Recommendations

Eh (lux)	Elevation Eh	Ev $($ (lux)	Elevation Ev	Avg:Min
300	$2^{\prime}-6^{\prime \prime}$	50	$4^{\prime}-0^{\prime \prime}$	$1.5: 1^{*}$

*From Table 12.6
The control and LPD requirements from ASHRAE 90.12013 are given in Table 16 below.

Table 16 - Open Office 2520 LPD and Control Requirements

| LPD | Local
 (W/SF) | Manual | Restricted
 ON
 Ot Partial
 Automatic
 ON | Bilevel | Automatic
 Daylight
 Lighting
 Control | Responsive
 Controls for
 Sidelighting | Automatic
 Full OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Scheduled |
| :---: |
| Shutoff |

Note: "ADD1" and "ADD2" designates requirements that have an option. i.e. one of the "ADD1" options and one of the "ADD2" options must be selected.

1.4.3 Final Design

Table 17 - Open Office 2520 Luminaire Schedule

Type	Description	Manufacturer	Model	Lamp	Input Watts	Voltage	Fixture Image
P1	CYLINDRICAL LED DIRECT/INDIRECT PENDANT	PEERLESS	RD4M4 W20/20 8FT R8 277 EZB SCT LP835 F1/24 C110	INTEGRAL	40	277	
P1E	EMERGENCYCYLINDRICAL LED DIRECT/INDIRECT PENDANT	PEERLESS	RD4M4 W20/20 8FT R8 277 EZB 1 EC SCT LP835 F1/24 C110	INTEGRAL	40	277	
P2	CYLINDRICAL LED WALL WASHER PENDANT	PEERLESS	RD4MW W20 40FT R8 277 EZB SCT LP835 F1/24 C110	INTEGRAL	20	277	
P3	CYLINDRICAL LED DIRECT/INDIRECT PENDANT	PEERLESS	RD4M4 W40/20 4FT R4 277 EZB SCT LP835 F1/24 C110	INTEGRAL	60	277	

Figure 21 - Open Office 2520 RCP

Table 18 - Open Office 2520 Target Vs Design Illuminance

	Eh (lux)	Height Eh	Avg:Min
Target	300	$2^{\prime} 6 "$	$1.5: 1$
Design	329	$2^{\prime \prime} 6 "$	$1.98: 1$

Figure 22 - Open Office 2520 Isolines

Figure 23 - Open Office 2520 Perspective

Figure 24 - Open Office 2520 Perspective

The LPD for this design is $0.71 \mathrm{~W} / \mathrm{SF}$ which is a 28% reduction from the maximum allowed LPD. See Appendix A-2 - Lighting Power Density Calculations for the calculations.

The ASHRAE control requirements were addressed as follows:
Local Control: There are control stations located at each door.

Manual ON: This is not required because the lighting is restricted to partial automatic on.

Restricted to Partial Automatic ON: The occupancy sensors are only able to turn on a portion of the lighting for this space.

Bilevel Lighting Control: The lighting control stations allow for various luminaire combinations to be turned on including a setting that is between 30% and 70% of the total lighting power.

Automatic Daylight Responsive Controls for Sidelighting: A large portion of the room is a primary sidelighted area. As a result photo sensor control is provided for all of the luminaires in this area. Continuous dimming will be used for these luminaires.

Automatic Full OFF: The lighting control system is equipped with vacancy sensors that will turn off all of the lighting for the space.

Scheduled Shutoff: This is not required because automatic full off is being utilized.
See Figure 25 on the next page for lighting control details.

Figure 25 - Open Office 2520 Lighting Control

1.5 Ceremonial Courtroom 4100

1.5.1 Introduction

Ceremonial Courtroom 4100 is located in the southeast end of the building and is the largest of the courtrooms. This courtroom has an area of 2900 SF with 222 public seats and a large area for proceedings that includes the typical items (attorney's tables, evidence table, jury seating, etc.) and seating for a panel of judges. There are various activities that take place in the courtroom that require very different illuminance levels. Figure 26 below gives the layout and dimensions of Ceremonial Courtroom 4100.

Figure 26 - Ceremonial Courtroom 4100 Layout and Dimensions

The finish materials and their properties for Ceremonial Courtroom 4100 are listed in Table 19 and Table 20 below.

Table 19 - Ceremonial Courtroom 4100 Finish Schedule

Surface	Description	Color	Reflectance
Ceiling	Acoustical panel ceiling $24^{\prime \prime} \times 48^{\prime \prime}$	White	0.83
	Painted gypsum	Pure White (7005)	0.85
Wall	Acoustic Fabric Panel	$\begin{array}{\|l\|} \hline \text { Designtex } \\ 4139102 \\ \text { Clay } \\ \hline \end{array}$	0.72*
	Handset Stone	Mountain Green	0.22*
	Paint	Natural Choice (7011)	0.73
	Hardwood veneer	Black Walnut	0.30*
Floor	Broadloom Carpet	$\begin{aligned} & \hline \text { Dusk } \\ & \text { (921) } \end{aligned}$	0.03*

*denotes reflectances that were calculated by AGI32 based on the manufacturers image
Table 20 - Ceremonial Courtroom 4100 Glazing Types

Surface	Description	PEXT	PINT	PsOL	VLT
Exterior windows	Vision glass	0.11	0.11	0.26	.49
Interior windows	Acoustic Glazing	0.11^{*}	0.11^{*}		.49

[^0]
1.5.2 Design Criteria

Flexibility: in order to accommodate the various activities that will take place in the courtroom the lighting solution must have various scenes

Respect: the lighting design of this space should convey a sense of honor and respect
Both the illuminance level and illuminance ratios are based on the recommendations in the IES Handbook and are listed in Table 21 below.

Table 21 - Ceremonial Courtroom 4100 Illuminance Recommendations

Location	Eh (lux)	Height Eh	Ev (lux)	Height Ev	Max:Avg	Avg:Min	Notes
Attorneys' Tables	500	$2^{\prime}-6^{\prime \prime}$	200	$4^{\prime}-0^{\prime \prime}$		$2: 1$	
AV Presentation Screen		50		$2: 1$		Max value	
Bench and Clerks	500	$2^{\prime}-6^{\prime \prime}$	200	$4^{\prime}-0^{\prime \prime}$		$2: 1$	
Jury Box	300	$2^{\prime}-6^{\prime \prime}$	150	$4^{\prime}-0^{\prime \prime}$		$2: 1$	
Public Seating	100	$2^{\prime}-6^{\prime \prime}$	50	$4^{\prime}-0^{\prime \prime}$		$2: 1$	
Witness Stand	300	$2^{\prime}-6^{\prime \prime}$	150	$4^{\prime}-0^{\prime \prime}$		$2: 1$	

The control and LPD requirements from ASHRAE 90.12013 are given in Table 22 below.

Table 22 - Ceremonial Courtroom 4100 LPD and Control Requirements

LPD							
(W/SF)	Local Control	Manual ON	Restricted to Partial Automatic ON	Bilevel Lighting Control	Automatic Daylight Responsive Controls for Sidelighting	Automatic Full OFF	Scheduled Shutoff
1.72	REQ	ADD1	ADD1	REQ	REQ	ADD2	ADD2

Note: "ADD1" and "ADD2" designates requirements that have an option. i.e. one of the "ADD1" options and one of the "ADD2" options must be selected.

1.5.3 Final Design

Table 23 - Ceremonial Courtroom 4100 Luminaire Schedule

Type	Description	Manufacturer	Model	Lamp	$\begin{array}{\|l\|} \hline \text { CCT } \\ \hline \end{array}$	CRI	$\begin{array}{\|c} \hline \begin{array}{c} \text { Life } \\ \text { (Hours) } \end{array} \\ \hline \end{array}$	Ballast	Input (Watts)	Voltage	Fixture Image
R1	RECESSED CIRCULAR 6 INCH NARROW BEAM DOWNLIGHT 1500 LUMEN	COOPER LIGHTING	LD6A15DL3 ERN6A10835 6LN1LI	INTEGRAL	3500	80	$\begin{gathered} 50,000 \\ \text { L70 } \end{gathered}$	INTEGRAL	22.4	277	
R2	RECESSED CIRCULAR 6 INCH WIDE BEAM DOWNLIGHT 1000 LUMEN	COOPER LIGHTING	LD6A10DL3 ERW6A10835 6LW1LI	INTEGRAL	3500	80	$\begin{gathered} 50,000 \\ \text { L70 } \end{gathered}$	INTEGRAL	14.1	277	
R4	RECESSED CIRCULAR 6 INCH WIDE BEAM WALL WASH 1000 LUMEN	COOPER LIGHTING	LD6A10DL3 ERM6A10835 6LM111LI	INTEGRAL	3500	80	$\begin{array}{\|c\|} \hline 50,000 \\ \text { L70 } \end{array}$	INTEGRAL	14.1	277	
R10	RECESSED CIRCULAR 6 INCH WIDE BEAM DOWNLIGHT 3000 LUMEN	COOPER LIGHTING	LD6A30DL3 ERW6A30835 6LW1LI	INTEGRAL	3500	80	$\begin{gathered} \text { 50,000 } \\ \text { L70 } \end{gathered}$	INTEGRAL	43.6	277	
R11	RECESSED CIRCULAR 6 INCH MEDIUM BEAM DOWNLIGHT 2000 LUMEN	COOPER LIGHTING	LD6A20DL3 ERN6A20835 6LM1LI	INTEGRAL	3500	80	$\begin{gathered} 50,000 \\ \text { L70 } \end{gathered}$	INTEGRAL	31.5	277	
S1E	SURFACE MOUNTED LINEAR CEILING WASH	IO LIGHING	0-08-35KV2HO-1-72-L	INTEGRAL	3500	80+	$\begin{gathered} \text { 50,000 } \\ \text { L70 } \end{gathered}$	INTEGRAL	63.4	277	

Figure 27 - Ceremonial Courtroom 4100 Reflected Ceiling Plan

All luminaires except S1 are recessed in the ceiling. Coordinate the mounting heights with the architect. See Figure 28 on the next page for the cove dimensions.

Figure 28 - Cove Detail

Table 24 - Ceremonial Courtroom 4100 Target Vs Design Illuminance

Location		$\begin{array}{\|c\|} \hline \text { Eh } \\ \text { (lux) } \end{array}$	Height Eh	Avg:Min
Attorneys' Tables	Target	500	2'-6"	2:1
	Table 1	454	2'-6"	1.1:1
	Table 2	457	2'-6"	1.1:1
Bench and Clerks	Target	500	2'-6"	2:1
	Design (Bench Upper)	434	2'-6"	1.9:1
	Design (Bench Lower)	460	2'-6"	1.7:1
	Design (Clerks)	500	2'-6"	1.2:1
Jury Box	Target	300	2'-6"	2:1
	Design	325	2'-6"	2.0:1
Podium	Target	500	2'-6"	2:1
	Design	456	2'-6"	1.1:1
Public Seating	Target	100	2'-6"	2:1
	Design	123	2'-6"	2.1:1
Witness Stand	Target	300	2'-6"	2:1
	Design	384	2'-6"	1.1:1

Figure 29 - Ceremonial Courtroom 4100 Isoline

Figure 30 - Ceremonial Courtroom 4100 Perspective from Public Seating

Figure 31 - Ceremonial Courtroom 4100 Perspective from Witness Stand

The LPD for this design is 0.66 W/SF which is a 64% reduction from the maximum allowed LPD. See Appendix A-2 - Lighting Power Density Calculations for the calculations.

The ASHRAE control requirements were addressed as follows:

Local Control: There are control stations located at the two doors at the front of the room and at the bench.

Manual ON: The lighting system is restricted to manual on.

Restricted to Partial Automatic ON: This is not required because the system is restricted to manual on.

Bilevel Lighting Control: The lighting control stations allow for various Luminaire combinations to be turned on including a setting that is between 30% and 70% of the total lighting power.

Automatic Daylight Responsive Controls for Sidelighting: A small portion of the room is primary sidelighted area, but this portion and the associated installed lighting power is enough to make dimming a code requirement. As a result photosensor control is provided for all of the luminaires in this area. Continuous dimming will be used for these luminaires.

Automatic Full OFF: The lighting control system is equipped with vacancy sensors that will turn off all of the lighting for the space.

Scheduled Shutoff: This is not required because automatic full off is being utilized.

See Figure 32 on the next page for lighting control details.

Figure 32 - Ceremonial Courtroom 4100 Lighting Control

The presets will be as follows:

Preset \#1 (Entry): control group \#1 at 100\%

Preset \#2 (General Proceedings): control group \#1 - control group \#7 at 100\%
Preset \#3 (Projection Screen Use): control group \#1 - control group \#6 and control group \#8 at 100\% and control group \#7 at 25\%

Preset \#4 (No Jury): control group \#1 - control group \#5 and control group \#7-control group \#8 at 100\%

Table 25 below gives the illuminance on the screen for two different presets. Preset \#2 and preset \#3. For preset \#3 the average illuminance at the clerk is 383 Lux which is significantly below the target, but this scene should only be used in rare situations that demand the highest image quality.

Table 25 - Presentation Screen Illuminance Values

Location		Ev (lux $)$	Max:Avg	Notes
AV Presentation Screen	Target	50	$2: 01$	
	Design (normal)	66	$1.6: 1$	
	Design $(\mathrm{A} / \mathrm{V}$ mode $)$	$40.2: 1$		

The luminaire drivers for this space have two different types of control. The drivers for the cove lights use Lutron Hi-Lume and the drivers for the recessed luminaires use Lutron Ecosystem. One option for a control system for this space is a Lutron GRAFIK Eye QS with EcoSystem. This system would be able to accommodate the seven lighting control zones and the two other zones (one for shades and one for the screen).

A Sivoia QS could be used for shade control and is capable of controlling up to ten shades from one control box. This room only has four shades so this box could provide control for another adjacent room as well.

Sensors

Occupancy/vacancy sensing could be handled by two ceiling mount LOS-CDT-2000WH Dual tech which are rated for 2000 SF.

A daylight sensor that is compatible with the EcoSystem ballasts is the C-SR-M1-WH
A QS Contact closure interface QSE-IO could be used to interface the lighting control system with the projection screen.

User Controls

There are 3 user control stations located within this space. The main unit is located at the bench and two 3-button seeTouch QS keypads are located at the front doors. The main control allows for control of multiple lighting scenes as well as control of the window shades and projection screen. The 3-button control stations allow for preset \#1 or preset $\# 2$ to be turned on and for all the lights to be turned off.

2. Part 2 - Electrical Depth

2.1 Introduction

The BCJC's electrical system utilizes a 3200 A unit substation that is fed by a 2000 KVA building transformer with a 34.5 KV primary and a 277/480 secondary. The building utilizes a dual voltage AC distribution system of $277 / 480 \mathrm{~V}$ and 120/208 V. A 1000 KW generator and a 100 KW UPS serve the emergency power distribution system. There are various low voltage systems throughout the building including audio visual, telecommunications, fire alarm, and an expansive security system. For this report the changes made in the lighting equipment were reflected in the electrical distribution system, a breaker coordination study was performed, a short circuit study was performed and finally research was performed into the feasibility of a DC distribution system.

2.2 Distribution System Analysis/Redesign

In order to accommodate the changes made in the Lighting Depth all of the circuits were updated to reflect the changes in the luminaire type, quantity, and layout for the four spaces that were redesigned. The conductors, conduit, circuit breakers, and panelboards were resized as required.

The changes in the lighting load for Lobby 1000 and Open Office 2520 did not have a significant impact on the panel loads because the amount of load from these two spaces is just a small fraction of the load that is on the entire panel.

The original design for Courtroom 4100 had all of the luminaires run through a single 84 circuit dimmer panel that served a total of six courtrooms. With the redesign dimming is handled by the luminaire ballasts so the dimming panel is no longer required. The total original lighting load for Ceremonial Courtroom 4100 is shown in Table 26 below and the lighting load for the redesigned system is shown in Table 27 below.

Table 26 - Original Lighting Loads for Ceremonial Courtroom 4100

DIMMING PANEL SCHEDULE					
MAINS: VOLTAGE	$\begin{aligned} & \text { 100A MCB } \\ & 480 / 277 \\ & \hline \end{aligned}$	SERVING : FOURTH FLOOR MOUNTING:	AIC: 25,000 SURFACE		
CIRCUIT	AREA/ROOM JURY COURTROOM 4100	MOUNTING: CIRCUIT BREAKER 20/1	VOLTAGE	REMARKS	LOAD (W)
26			277	DIMMED	676
27	JURY COURTROOM 4100	20/1	277	DIMMED	232
28	JURY COURTROOM 4100	20/1	277	DIMMED	174
29	JURY COURTROOM 4100	20/1	277	DIMMED	232
30	JURY COURTROOM 4100	20/1	277	DIMMED	690
59	JURY COURTROOM 4100	20/1	277	DIMMED / EMERGENCY	840
60	JURY COURTROOM 4100	20/1	277	DIMMED / EMERGENCY	116
81	JURY COURTROOM 4100	20/1	277	DIMMED	58
82	JURY COURTROOM 4100	20/1	277	DIMMED	116
83	JURY COURTROOM 4100	20/1	277	DIMMED	29
84	JURY COURTROOM 4100	20/1	277	DIMMED	29
				Total:	3192

Table 27 - Revised Lighting Loads for Ceremonial Courtroom 4100

CIRCUIT	AREA	CIRCUIT BREAKER	VOLTAGE	REMARKS	LOAD (W)
1	Public Seating, Area of Proceedings (includes witness)	$20 / 1$	277	Normal Power	491.8
2	Jury and Judges	$20 / 1$	277	Normal Power	342.3
3	Cove	$20 / 1$	277	Emergency Power	1014.4
4	Screen, Stairs, and ramp	$20 / 1$	277	Normal Power	56.4

The revised load is about $2 / 3$ of the original load. Assuming that each of the six courtrooms served by Dim 4 would have the same load as Ceremonial Courtroom 4100 (which is a conservative estimate because 4100 is much larger than most of the courtrooms) the total lighting load would be approximately 11,400 watts with approximately 6,000 watts of this load being emergency/backup lighting. 6000 watts gives a load of about 6 KVA . This is a very small load and requires a very small panelboard. However, to accommodate any future needs the new panel to replace DIM 4 could be a 30 circuit panelboard with a 50 amp main breaker. Joshua Lange

2.3 Short Circuit Analysis

A short circuit analysis is an important step in electrical system design in order to make sure that equipment with an appropriate AIC rating is selected. The maximum current let through for each transformer in the building was calculated by assuming infinite current available at the primary. Table 28 below gives the specifications and calculations for transformers that are representative of all the transformers in the BCJC. The associated equations are also given.

Table 28 - Calculated Maximum Transformer Let Through Current

Designation	KVA	Primary Voltage	Secondary Voltage	Phase	Type	$\% Z^{*}$	Mounting	$\mathrm{I}_{\text {FLA }}$	$\mathrm{I}_{\text {SC }}$
T 1	2000	34,500	$480 \mathrm{Y} / 277$	3	Dry	5.75	Floor	7,217	125,511
T 2	30	480	$208 \mathrm{Y} / 120$	3	Dry	1.8	Hung	250	13,879
T 4	45	480	$208 \mathrm{Y} / 120$	3	Dry	1.8	Hung	375	20,818
T 29	15	480	$208 \mathrm{Y} / 120$	3	Dry	1.9	Hung	125	6,574
T 31	75	480	$208 \mathrm{Y} / 120$	3	Dry	1.7	Hung	625	36,738

*for T1 \%Z was taken from Eaton pad mounted transformer typical design impedance for all others \%Z was taken from Eaton Type EPT minimum impedance

Equation 1 - Maximum Secondary Full Load Amps

$$
I_{F L A}=\frac{(k V A)(1000)}{\left(V_{L L}\right) \sqrt{3}}
$$

Equation 2 - Secondary Short Circuit Current

$$
I_{S C}=\left(I_{F L A}\right)\left(\frac{100}{\% Z}\right)
$$

The maximum fault current available at each floor was calculated taking into account the let through of the main transformer (assuming infinite current from the utility) and the impedance from the main cable and busway. The calculations are based on the Bussmann Short Circuit Calculation Guide. Table 29 on the next page shows the details of each calculation. The associated equations are also given.

Table 29 - Calculated Available Fault Current for Each Busway at Each Floor

Location	Conductor Type	$\begin{array}{\|c\|} \hline \text { Length } \\ \text { (Feet) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Table } 5 \\ \mathrm{C} \\ \hline \end{array}$	136	Conductors per phase	V_{LL}	$\begin{gathered} \mathrm{f} \\ 3 \varnothing \\ \hline \end{gathered}$	M	$\mathrm{I}_{\text {sc }}$	Notes
Bus \#1	3 Sets 300 KCMIL	125	18177	125,511	3	480	1.04	0.49	61,580	Approximate length of conductor from main panel to bus
Level 6	800A Bus	16	49300	61,580	1	480	0.07	0.93	57,438	Length of bus to electrical room based on floor to floor height
Level 5	800A Bus	32	49300	61,580	1	480	0.14	0.87	53,818	
Level 4	800A Bus	48	49300	61,580	1	480	0.22	0.82	50,627	
Level 3	800A Bus	64	49300	61,580	1	480	0.29	0.78	47,793	
Level 2	800A Bus	80	49300	61,580	1	480	0.36	0.73	45,260	
Level 1	800A Bus	96	49300	61,580	1	480	0.43	0.70	42,982	
Bus \#2	3 Sets 300 KCMIL	30	18177	125,511	3	480	0.25	0.80	100,476	Approximate length of conductor from main panel to bus
Level 6	800A Bus	16	49300	100,476	1	480	0.12	0.89	89,898	Length of bus to electrical room based on floor to floor height
Level 5	800A Bus	32	49300	100,476	1	480	0.24	0.81	81,335	
Level 4	800A Bus	48	49300	100,476	1	480	0.35	0.74	74,262	
Level 3	800A Bus	64	49300	100,476	1	480	0.47	0.68	68,320	
Level 2	800A Bus	80	49300	100,476	1	480	0.59	0.63	63,259	
Level 1	800A Bus	96	49300	100,476	1	480	0.71	0.59	58,896	
Bus \#3	3 Sets 300 KCMIL	35	18177	125,511	3	480	0.29	0.77	97,244	Approximate length of conductor from main panel to bus
Level 6	800A Bus	16	49300	97,244	1	480	0.11	0.90	87,301	Length of bus to electrical room based on floor to floor height
Level 5	800A Bus	32	49300	97,244	1	480	0.23	0.81	79,204	
Level 4	800A Bus	48	49300	97,244	1	480	0.34	0.75	72,481	
Level 3	800A Bus	64	49300	97,244	1	480	0.46	0.69	66,810	
Level 2	800A Bus	80	49300	97,244	1	480	0.57	0.64	61,962	
Level 1	800A Bus	96	49300	97,244	1	480	0.68	0.59	57,770	
Bus \#4	3 Sets 300 KCMIL	55	18177	125,511	3	480	0.46	0.69	86,156	Approximate length of conductor from main panel to bus
Level 6	800A Bus	16	49300	86,156	1	480	0.10	0.91	78,259	Length of bus to electrical room based on floor to floor height
Level 5	800A Bus	32	49300	86,156	1	480	0.20	0.83	71,689	
Level 4	800A Bus	48	49300	86,156	1	480	0.30	0.77	66,137	
Level 3	800A Bus	64	49300	86,156	1	480	0.40	0.71	61,382	
Level 2	800A Bus	80	49300	86,156	1	480	0.50	0.66	57,266	
Level 1	800A Bus	96	49300	86,156	1	480	0.61	0.62	53,667	

Equation 3 - f Calculation for 3 Phase Faults

$$
3 \emptyset \text { faults: } f=\frac{\sqrt{3}(L)\left(I_{3 \emptyset}\right)}{(C)(n)\left(V_{L L}\right)}
$$

Equation 4 - M Calculation

$$
M=\frac{1}{1+f}
$$

A single circuit was selected to calculate the available fault current available at each panelboard. The results of this calculation are shown on the next page.

An AIC rating of 10,000 is sufficient for all of the sub panels, but the sub transformers and breakers that protect them need AIC ratings of up to 40,000 .

2.4 DC Distribution

Throughout my time at Penn State I have heard it mentioned several times by several different sources that there is significant potential for increasing electrical efficiency by utilizing a DC distribution system for equipment that can utilize DC power. This equipment includes motors, servers, UPS systems, and LED lighting. The increase in efficiency would come from reducing the use of inverters ad rectifiers. I felt that this would be an excellent topic for the electrical depth of my thesis. My initial research into this topic found reports that claimed a significant savings potential of nearly 25%. If these claims were true it seemed that surely the industry would quickly adopt this new method of electrical distribution, but there seems to be no large scale adoption of this method. Upon further research I found a report ${ }^{1}$ that compared the results of several of the previous studies and discussed the errors in the methodology of the studies and misconceptions of the data in the reports that were spread by mainstream media. The main misconception comes from the reports comparing the efficiency of a new DC distribution system to the efficiency of existing AC systems that were installed around the 1980's. This is a fair comparison if this is what is actually going to occur, but is pretty much useless when designing a system for a new building using new equipment because it neglects the fact that the efficiency of AC distribution systems and equipment has greatly improved over the last 30 years. The largest discrepancy between the reports was in the efficiency of the UPS. The reports that claimed the highest increase in efficiency by utilizing DC distribution used 10% loss for AC based UPS systems. These values were accurate for the equipment they used, but they used equipment that was a couple of generations old or that operated at a lower voltage. Currently there are currently UPS systems available that operate in bypass mode when power quality is acceptable. This leads to an efficiency of about 98.6%. Another area where there was a large discrepancy was in the area of transformer efficiency. The reports with large efficiency improvements for DC systems also utilized low efficiency transformers for the AC distribution systems.

In conclusion, DC distribution and AC distribution systems have very similar efficiencies; there is not an appreciable difference between the two. In general, it is not practical to use a DC distribution system due to the utility providing AC and the prevalence of AC loads in the building. However, one area where DC distribution could yield savings is for situations where there is onsite DC generation like photovoltaic or wind. In these cases the DC generated by the sources could be distributed directly to DC loads and thus avoiding any inverter or rectifier losses.

3. Part 3 - Acoustical Breadth/MAE Depth

3.1 Introduction

Speech intelligibility is an important part of court proceedings and Ceremonial Courtroom 4100 is of a size where conditions that are unfavorable for speech intelligibility could easily exist. The large size of this space also makes the application of a sound reinforcement system potentially very beneficial to speech intelligibility. The original design for Ceremonial Courtroom 4100 includes acoustical treatment and a sound reinforcement system. The influence of these systems on speech intelligibility was evaluated through a reverberation time (RT) analysis and a sound distribution analysis.

3.2 Acoustical Breadth: Reverberation Time (RT) Analysis

3.2.1 Introduction

For the acoustical breadth, an analysis was performed of the RT of the space. This analysis involved deciding what range of RT is acceptable for a courtroom, modeling the space as currently designed (including geometry and materials), calculating the RT of the space, and making recommendations to bring the RT into closer agreement with the criteria that were developed.

3.2.2 Original Design

The original design included acoustical panel ceiling for almost the entire ceiling, large sections of seamless acoustical system, and large sections of fabric wrapped acoustical panels. A "worst case scenario" was assumed for the RT calculation by assuming that there would be no jury, only one judge, and only 10% of the public seating area occupied. See the next page for the details of the RT calculation for the original design. The resulting RT's for the 125 Hz to 4000 Hz octave bands are shown in Figure 6Figure 33 below.

Figure 33 - Ceremonial Courtroom 4100 Original Design RT

㐫

290 '8

PSU AE Lighting/Electrical Thesis 2015

3.2.3 Design Criteria

A target reverberation time was set based on the volume of Ceremonial Courtroom 4100 and the type of activity that was expected to occur in it. The volume was calculated to be approximately 31,000 cubic feet and the anticipated activity is speech. Based on this information the target RT for the 500 Hz octave band was found by using Figure 17.10 from an architectural acoustics text book². See Figure 34 below. To determine the RT targets for the other octave bands the recommendations in another architectural acoustics text book ${ }^{3}$ were used; increasing the RT at 125 Hz by 30% and the RT at 250 Hz by 15%. See Table 30 below for the target RT's.

Figure 34 - Figure 17.10 With Annotations to Find the Target RT for Ceremonial Courtroom 4100

Table 30 - Target RT for Ceremonial Courtroom 4100

	Frequency (Hz)						
	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{4 0 0 0}$	
Target RT (s)	0.98	0.86	0.75	0.75	0.75	0.75	

[^1]${ }^{3}$ (Mehta, Johnson, \& Rocafort, 1999)
Joshua Lange
PSU AE Lighting/Electrical Thesis 2015

3.2.4 Final Design

The original RT was significantly lower than the target RT for all octave bands and particularly for the high frequencies. This was with the assumption that the public seating area was only at 10% occupancy. A higher occupancy would further reduce the RT time. In order to bring the RT into closer alignment with the target RT many modifications were made to the finish materials of the room including changing large sections of the acoustical panel ceiling to gypsum, changing fabric wrapped acoustical panels to fabric wrapped non-acoustical panels, and removing all of the seamless acoustical treatment. See Appendix B - Supporting Material for Acoustical Breadth for elevations detailing the locations of materials that were changed. The detailed calculations for the new design are given on the next page. Figure 35 below compares the target, original, and design RT's. The design RT is much closer to the target, but is still low at the 4000 Hz octave band and is a bit high at the 250 Hz band. The curve could be brought into closer alignment if specialized materials were used. However, this addition would add considerable cost and complexity to the project with only minimal benefit.

Figure 35 - Target, Original, and Design RT for Ceremonial Courtroom 4100

 Solw

-
 4

3.3 Acoustical MAE Depth: Sound Reinforcement System Analysis

3.3.1 Introduction

The design for Ceremonial Courtroom 4100 has a distributed audio amplification system. The influence that this system has on speech intelligibility and distribution was studied using EASE. This study involved creating a geometric model of the space, assigning material properties, selecting appropriate files for the sources, and receivers, and running simulations. The metrics selected to measure system performance were sound pressure level (SPL) and speech transmission index (STI). Auralizations were created to simulate what would be heard from two different locations in the audience when the sound reinforcement system was and was not in use.

3.3.2 Model

Figure 36 below shows the layout for the model. There are 21 recessed ceiling mounted speakers. For this analysis, 6 audience areas were used: Audience 1, Audience 2, and Audience 3 comprise the public seating area, Jury is the jury box, and Judge 1 and Judge 2 make up the judge's box. Two seat locations were used for auralizations one at the front right and one at the back center of the audience area. Figure 37 below is a 3D perspective of the space.

Figure 36 - Ceremonial Courtroom 4100 Plan

Figure 37 - Ceremonial Courtroom 4100 Perspective

3.3.3 Results

Figure 38 below shows the SPL distribution without sound reinforcement and Figure 39 below shows the SPL distribution with sound reinforcement. The sound distribution with the sound reinforcement system is at a higher level and is much more consistent than the unamplified speech distribution. This would help to improve speech intelligibility.

Figure 38 - Direct SPL Without Sound Reinforcement

Figure 39 - Direct SPL With Audio Reinforcement

Figure 40 below shows the STI map without sound reinforcement and Figure 41 below shows the STI map with sound reinforcement. The STI with sound reinforcement is much higher and more consistent especially in the public seating areas than that of the unreinforced system.

Figure 41 - STI With Sound Reinforcement

A background noise level (BNL) of 30 dB was used in the STI calculations.
The speaker used in the simulations was an Atlas FAP62T at an output level that was about 20dB below its output at 1 W . For the simulation of unreinforced speech the "Man Loud" file provided in EASE was used at an unadjusted level.

Four auralizations were created to demonstrate how the room would sound with and without the sound reinforcement system. These auralizations were created by convolving the impulse response generated by the Aura module of EASE. The auralizations are described in Table 31 below and can be found at Y:ILange_Thesis\Report_Files\Auralizations.

Table 31 - Auralizations

Source:	Receiver Locations	
Lawyer	Seat 1	Seat 2
Sound Reinforcement System	Seat 1	Seat 2

3.3.4 Conclusion

The analysis demonstrated that the sound reinforcement system greatly increased the level and uniformity of SPL throughout the listener areas. The analysis also showed a large improvement in STI for the listener areas when the sound reinforcement system was used. However, a value of 0.7 is considered a 'good' STI, but even with the sound reinforcement system the max STI is only 0.7. Further still, this value is achieved only directly below the speakers and for listeners further from the speaker STI is significantly lower. The STI could be improved by selecting a speaker with a wider distribution pattern.

4. Part 4 - Mechanical Breadth: Combined Heat and Power (CHP)

Analysis

4.1 Introduction

A CHP system has the potential to greatly improve the primary energy efficiency of a building, reduce energy costs, and significantly reduce emissions associated with generation. An analysis was performed to evaluate the suitability of the BCJC for a CHP system. There was limited project specific data available so many design decisions were made based on existing data from similar projects and average values from similar buildings. The analysis included finding appropriate thermal and electric demands for the BCJC, checking the suitability of the loads for CHP, and calculating the simple payback period of a CHP system.

4.2 Analysis

The heating and cooling loads were extracted from a Trane Trace model. The model provided average hourly loads for Saturday, Sunday, Monday, and the average weekday for each month. The monthly loads were calculated by assuming there are 4.345 of each day per month. See Equation 5 below.

Equation 5 - Heating and Cooling Loads

Total monthly load $=4.345$ (Saturday + Sunday + Monday $+4 \times$ Average Weekday $)$
The electric demand was calculated based on data from the United States Energy Information Administration (EIA). EIA provided system separated annual electric use data for 25 office buildings that are in the Mid-Atlantic region, were constructed from 1990-1999, are between 200,001 and 500,000 SF, and use non-electric heat. The total annual electric usage for each subsystem was reported in mBTU. This consumption was averaged over the entire year and converted to watts and used to find the average electric demand per square foot. The average electric demand for the 25 buildings was found to be 2.41W/SF. By using the electric cooling subsystem data from EIA the average percentage of electricity used for cooling was found to be 11\%. See Table 32 below for the electric demand data used in the analysis.

Table 32 - Annual Electric Use

Annual Electric Usage						
Annual Avg. (W/SF)	Hours per year	Building Area (SF)	Total Usage (KWh)	Cooling (KWh)	Other (KWh)	
2.41	8,760	275,000	$5,805,690$	638,626	$5,167,064$	

The electric used for cooling was distributed by month proportionally to the cooling loads for that month. The remaining electric use was distributed evenly across the months. See Table 33 below.

Table 33 - Monthly Loads

Month	Thermal Load (MMBTU)	Cooling Load (Tons)	Percentage of Cooling	Electric (KWh)
Jan	2,966	0	0%	430,589
Feb	2,936	0	0%	430,589
Mar	2,656	124	0%	430,753
Apr	2,396	5,758	1%	438,202
May	1,907	52,884	11%	500,513
Jun	1,568	92,296	19%	552,624
Jul	1,224	137,726	29%	612,692
Aug	1,573	121,058	25%	590,653
Sep	1,856	56,014	12%	504,651
Oct	2,288	12,761	3%	447,461
Nov	2,488	4,375	1%	436,374
Dec	2,758	0	0%	430,589
Total	$\mathbf{2 6 , 6 1 5}$	482,996		$5,805,690$

The base electric load was found by taking the average electric use for the winter (December, January, and February) and the base thermal load was found by taking the average thermal demand for the summer months (June, July, and August). See Table 34 below.

Table 34 - Summer and Winter Average Demand and Seasonal Based Loads

Summer Average (June, July, August)	
Thermal (MMBTU/hr)	1.99
Electric (KW)	802

Winter Average (December, January, February)	
Electric (KW)	590
Thermal (MMBTU/hr)	3.95

Average Weather Demand	
Cooling Electric (KW)	212
Heating Thermal (MMBTU/hr)	1.96

A typical boiler efficiency of 80% was assumed for the calculations.
The 2013 average electric and natural gas costs for commercial customers in Pennsylvania were used to calculate spark spread and simple payback see Table 35 on the next page for fuel costs.

Table 35-2013 Average Fuel Costs

Fuel Cost	
Gas $\$ / 1000 \mathrm{CF}$	10.15
Gas \$/MMBTU	9.90
Electric \$/KWh	0.11
Electric \$/MMBTU	31.88

The difference between the cost of one MMBTU of electricity and one MMBTU of gas (known as spark spread) was calculated to be 21.98. The ratio of annual thermal energy demand to annual electric energy demand for the site (known as λ_{D}) was calculated to be 1.34. Figure 42 and Table 36 on the next page show the monthly thermal and electric demand of the site as well as the monthly λ_{D}.

The United States Department of Energy (DOE) CHP Qualification Tool was used to calculate the simple payback period for an appropriately sized CHP system. The result of this calculation was 16.3 years. Which is significantly longer than most clients are willing to accept.

七Z	2	2	2	2	Z	2	2	2	Z	Z	2	2	
820＇L	069	069	069	069	069	06G	069	069	069	069	069	065	
0	88^{\prime}	L9＇1	0G＇1	80\％	8L＇0	$69^{\circ} 0$	ع8＇0	で「	09＇1	18．1	00＇Z	20＇Z	
9ε	8L＇ε		ع1．$¢$	tG＇Z	Sl＇Z	89\％	Sl＇Z	19＇Z	8て＇ε	†9＇ε	20＇t	90＇t	
ES6＇L	98．689	LL＇L6G	96「てเ9	0ع＇169	で「608	1ε ¢ 68	20＊ $29 \angle$	t9＊989	8て＇009	L0．06G	S8＊89	S8．689	
S9E	0ε	（sKeg）पłuou ıәd sKeg											
069＇S08＇G	689＇0\＆t	ヤLE＇9Et	19カ＇くカナ	LS9＇ャ0G	ES9＇06S	269＇て19	ャZ9＇Zら̧	ELG＇00G	てOZ＇8Et	ESL＇0Et	689＇0¢t	689＇0¢t	ग！
S19＇9Z	8SL＇乙	88t＇ర	88でて	998＇1	\＆LG＇เ	七てZ＇เ	899＇1	L06＇1	$96 \varepsilon^{\prime} 乙$	9G9＇乙	986＇乙	996＇乙	peo7 6u！peer
1elol	ィəquəつə口	1əquəлОN	1290100	ıəquətas	15n6n＊	K｜n「	әun「	Kew	I！ 1 dV	yodew	Kıenaqə」	Kıenuer	पłUOW

4.3 Conclusion

Despite the relatively high spark spread, which should have resulted in a short payback period, the payback period of a CHP system for this project was found to be 16.3 years. This is well beyond the range that most owners consider acceptable for an energy saving investment. A CHP system is not appropriate for this project due to the very low λ_{D} which is a result of there not being any system that requires thermal energy other than the heating system. If the site had a higher thermal demand then a larger system could be selected which would mean that the savings from a reduction in purchasing electric rom he utility company would be greater and thus there would be a shorter payback period.

Summary and Conclusion

The lighting depth of this report detailed the lighting redesign for four unique spaces in the BCJC. The goal of the designs was to meet the criteria that were established. The criteria included qualitative criteria as well as illuminance values and ratios from the IES Handbook and control and LPD requirements from ASHRAE. All of the spaces met the control requirements. All of the spaces had LPD's that were significantly below the maximum as shown in Table 37 below.

Table 37 - LPD Reduction from Maximum

Space	\% LPD Reduction
Main Plaza	68
Main Lobby 1000	63
Open Office 2520	28
Ceremonial Courtroom 4100	64

The design illuminance values and ratios are generally in compliance with the targets, but there are some spaces that are not as close to the targets as was desired. This is mostly due to outlying analysis points being in locations that do not conform to the majority of the space. The illuminance targets not being exactly met was accepted because of the other design factors such as luminaire spacing/arrangement that would have been compromised by further adjustment.

The electrical depth of this report looked at the effects of the lighting breadth on the electrical distribution system and made the required changes. A short circuit study was performed to check that appropriately rated electrical equipment was selected. Finally, an investigation was performed into the potential of an increase in efficiency from the use of a DC distribution system. This revealed that there are not significant savings from a DC distribution system and that the added complexity of having a dual distribution system is not worth it.

For the acoustical breadth an analysis of the RT of Ceremonial Courtroom 4100 was performed. This analysis revealed that the RT of the original design was significantly below the target that was set for this project. As a result many material changes were made until the RT was in closer alignment with the criteria. However, the design RT was not in perfect agreement with the target especially in the 250 Hz octave and the 4000 Hz octave bands. This could have been resolved through the use of specialized construction materials, but this would have added significant cost and complexity to the project.

For the MAE breadth an analysis was performed on the influence of the sound reinforcement system in Ceremonial Courtroom 4100 on speech intelligibility. This analysis was performed using EASE. It was found that the sound reinforcement system Joshua Lange
greatly increases the SPL of the room and makes the SPL significantly more even as compared to an unamplified speaker. Additionally, the system also greatly improved STI, but was still in the low end of "good" values. This could be improved by using loudspeakers with a wider distribution.

The mechanical breadth of this report looked at the applicability of using a CHP system at the BCJC. Because data for this project was not available this analysis used average data from past similar projects for calculations. This analysis revealed that this project does not have a high enough thermal demand to make a CHP system economical and thus the payback period of the system was well beyond what is acceptable to most owners.

Overall, this project provided a wide range of opportunities for analysis and enabled me to sharpen a wide range of skills that will hopefully be used throughout my career in the construction industry.

Appendix A - Supporting Material for Lighting Depth

Appendix A-1 - Light Loss Factor Calculations

Fixtures P1, P1E		
Nonrecoverable		
Luminaire ambient temperature	1	
Voltage to luminaire	1	
Ballast factor	1	
Luminaire surface depreciation	1	
Recoverable		
Lamp lumen depreciation (LLD)	0.7	LED
Lamp burnouts factor (LBO)	1	
Luminaire dirt depreciation (LDD)	0.91	Clean, Other, General Diffuse: W
LLF =	0.637	

Fixtures P2		
Nonrecoverable		
Luminaire ambient temperature	1	
Voltage to luminaire	1	
Ballast factor	1	
Luminaire surface depreciation	1	
Recoverable		
Lamp lumen depreciation (LLD)	0.7	LED
Lamp burnouts factor (LBO)	1	
Luminaire dirt depreciation (LDD)	0.91	Clean, Other, Direct: W
LLF =	0.637	

Fixtures P3		
Nonrecoverable		
Luminaire ambient temperature	1	
Voltage to luminaire	1	
Ballast factor	1	
Luminaire surface depreciation	1	
Recoverable		
Lamp lumen depreciation (LLD)	0.7	LED
Lamp burnouts factor (LBO)	1	
Luminaire dirt depreciation (LDD)	0.85	Clean, Other, Semi Indirect: X
LLF =	0.595	

Fixtures S1E		
Nonrecoverable		
Luminaire ambient temperature	1	
Voltage to luminaire	1	
Ballast factor	1	
Luminaire surface depreciation	1	
Recoverable		
Lamp lumen depreciation (LLD)	0.7	LED
Lamp burnouts factor (LBO)	1	
Luminaire dirt depreciation (LDD)	0.85	Clean, Other, Indirect: X
LLF =	0.595	

Fixtures R1, R2, R3, R4, R5, R6, R7, R8, R9

Nonrecoverable

Luminaire ambient temperature	1
Voltage to luminaire	1
Ballast factor	1
Luminaire surface depreciation	1

Recoverable

Lamp lumen depreciation (LLD)	0.7	LED
Lamp burnouts factor (LBO) 1 Luminaire dirt depreciation (LDD) 0.91 Clean, Open/Unventilated, Direct: W 24 month cleaning interval LLF $=$ $\mathbf{0 . 6 3 7}$		

Fixture W1		
Nonrecoverable		
Luminaire ambient temperature	1	
Voltage to luminaire	1	
Ballast factor	1	
Luminaire surface depreciation	1	
Recoverable		
Lamp lumen depreciation (LLD)	0.7	LED
Lamp burnouts factor (LBO)	1	
Luminaire dirt depreciation (LDD)	0.85	Clean, Other, Indirect: X
LLF =	0.595	

Appendix A-2 - Lighting Power Density Calculations

Space	Fixture	Quantity	Lamps per fixture	Watts per lamp	Watts per fixture	Total watts	Space Type	Allowed Watts
Main Plaza						307	Lighting Zone 2	976
	$X 1$	8	N/A	N/A	27	216		
	X 2	22	N/A	N/A	4.14	91		

Space	Fixture	Quantity	Watts per fixture	Total watts	Room Area	LPD (W/SF)	Space Type	Allowed LPD	Allowed Watts
Main Lobby 1000				1077	3300	0.33	Lobby, all others	0.9	2970
	R3	13	22.4	291.2					
	R4	2	14.1	28.2					
	R7	3	62	186					
	R8	6	42	252					
	R9	6	42	252					
	W1	3	22.6	67.8					

Space	Fixture	Quantity	Watts per fixture	Total watts	Room Area	LPD (W/SF)	Space Type	Allowed LPD	Allowed Watts
Open Office 2520				1140	1600	0.71	Open Office	0.98	1568
	P1	22	40	880					
	P2	10	20	200					
	P3	1	60	60					

Space	Fixture	Quantity	Watts per fixture	Total watts	Room Area	LPD (W/SF)	Space Type	Allowed LPD	Allowed Watts
Ceremonial Courtroom 4100				1905	2900	0.66	Courtroom	1.72	4988
	R1	5	22.4	112					
	R2	24	14.1	338.4					
	R4	13	14.1	183.3					
	R10	3	43.6	130.8					
	R11	4	31.5	126					
	S1	16	63.4	1014					

Appendix A-3 - Luminaire Specification Sheets

\square RD4M4	Lumen Packages:					Low lumen package $=1550$ deliverd lumens*, 20W High lumen package $=3000$ delivered lumens*, 40W * nominal per 4^{\prime}
	Specify by Lamp Wattage	W20/20	W20/40	W40/20	W40/40	
	Indirect	Low	Low	High	High	
	Direct	Low	High	Low	High	
	Total Delivered Lumens*	3100	4550	4550	6000	
	Distribution Percentage ${ }^{\text {up }} /$ down	50/50	30/70	70/30	50/50	
	Total Watts*	40	60	60	80	
SPECIFICATIONS						

Construction

Extruded aluminum housing has diameter of $4^{\prime \prime}$. Die-cast aluminum end caps mechanically attach with no exposed fasteners.

Source

Four LED lumen packages (see chart above).
Three available color temperature options
(3000K, 3500K and 4000K). All within 2.5
MacAdam ellipses.

Optics

Optical system consists of injection-molded primary optics, co-extruded acrylic lenses and metal reflectors. Lenses connect end to end to form a continuous line of light.

Dimming

Dimming down to black standard with eldoLED driver. Dual circuit (DCT) option for independent indirect and direct dimming.

CATALOG NUMBER

Finish

Standard finish for housing and end caps is painted aluminum or gloss white. Consult factory for custom colors.

Controls

Optional nLight-embedded controls allow for constant lumen management (N80) and facilitate simple "plug-and-play" networking and control via CAT-5e cable.

Electrical

eldoLED light engine consists of modular LED
boards and 0-10V dimming driver that dims to black rated for 50,000 hours (L_{80}) at $25^{\circ} \mathrm{C}$ ambient temperature. Driver input wattage is 40W for 3100 delivered-lumen package, 60 W for 4550 deliveredlumen package and 80W for 6000 delivered-lumen package per 4' section.

Specify 120 V or 277 V. Pre-wired with 16AWG fixture wire. For special circuiting or wire gauge, consult factory. Plug-in electrical connectors included.

Environment

Damp location label option. Ambient operating temperature $\mathrm{O}^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.

Fixture Length

4^{\prime} and 8^{\prime} lengths in a single section for exact suspension spacing of 4^{\prime} and 8^{\prime}. For total luminaire length, add $3^{\prime \prime}$ for each end cap. Using internal joiners, 4^{\prime} and 8^{\prime} sections can be joined to form longer rows.

Validation

CSA/CUS listed. FCC part 15 certified. LM-79 tested. Lighting Facts partner.

Warranty

Five-year limited warranty coverage includes luminaire construction, LED light engine, driver and nLight control device. Terms and conditions apply.

Packaging

100% post-consumer recycled cardboard box. Biodegradable foam inserts and protective luminaire bag. Recycled kraft paper tape.

Example: RD4M4 W40/20 48FT R8 120 EZB SCT LP835 F1/24 C032 PDT1

[^2]

INTEGRATED NLIGHT MICRO SENSOR

Determine the appropriate sensor type, network type and sensor power source for your application. Enter the code in the Options section of the Catalog Number.
EXAMPLE: PDT1

Sensor Type (choose one)		Network Type \& Sensor Power Source (choose one)	
ADC nLight model nES ADCX	Daylight Dimming Specify 0-10V dimming ballast No occupancy sensing	1^{\star}	nLight-Enabled (Network-Ready) with Luminaire-Integrated Power Pack 10' Cat-5e cable and splitter provided
		2	Standalone Operation (No Networking) with Luminaire Integrated Power Pack No Cat-5e cable provided
PDT nLight model nES PDT7 ADCX	Daylight Dimming and/or Occupancy Detection Specify 0-10v dimming ballast for daylight dimming Specify fixed-output ballast for occupancy detection only (daylight dimming disabled)	3*	nLight-Enabled (Network-Ready) with Remote nLight Power Pack or nPanel 10' Cat-5e cable and splitter provided Order required remote nLight Power Pack or nPanel separately through nLight (Acuity Brands Controls)

For more information about the Integrated nLight Micro Sensor, its capabilities and options, download the PDF guide at: PeerlessLighting.com/nLight-Sensor-Guide *nLight-Enabled (network-ready) options include one RJ-45 connector on the luminaire, 10 feet of Cat-5e cable to control the entire luminaire row (depending on wattage/voltage limitations), and splitter. The Cat-5e cable drop is located in the same section as the sensor. For multiple zones, please contact techsupport@peerlesslighting.com.

WEIGHTS \& SUPPORT SPACING

Suspension spacing equals section length.
3 STANDARD SECTIONS

CONFIGURATIONS

Round 4 can be configured with special mitered sections to provide seamless corner illumination where two luminaires join together.
Reference Pattern Connector Guide for additional details.

PHOTOMETRICS

Actual performance may differ as a result of end-user environment and application.

Indirect/Direct

All results are according to IESNA LM-79-2008: Approved Method for the Electisel and Photometric Testing of Solid-State Uighting. The U.S. Department of Energy (DOE) verifies product test data and results.

Visit www.lightingfacts.com for the Label Reference Guide.
Registration Number. NJSM-AIVZMG (8/5/2013)
Model Number: RD4M4 W20/20 14120 EZ1 SCT LPS35
Type Other

RD4M4 4493L 3500K
LED
Peerless Lighting

AProgram of the US.DOE -d

All results are according io IESNA LM-79-2008: Approved Method for the Electricol and Photometric Testing of Solld-State Lighting. The U.S. Department of Energy (DOE) verfies product test cata and results.

Visit www.lightingfacts.com for the Label Reference Guide.
Registration Number: NJSM-ZSFOH3 (8/5/2013)
Model Number: RD4M4 W40/20 14120 EZ1 SCT LP335
Type: Other

RD4M4 5937L 3500K

Peerless Lighting

All results are according so IESNA LM-79-2008: Approved Method for the Elicticel and Photometric Testing of Salid-State Lighting The U.S. Department of Energy (DOE) verfies product test cata and results.

Visit www.lightingfacts.com for the Label Reference Guide.
Registration Number: NJSM-EF2EF8 (8/5/2013)
Model Number: RD4M4 W40/40 14120 EZ1 SCI LP335
Type: Other

Example: RD4M4 W40/20 48FT R8 120 EZB SCT LP835 F1/24 C032 PDT1

[^3]
Round 4 led
 Indirect/Direct

P1E

Project:

INTEGRATED NLIGHT MICRO SENSOR

Determine the appropriate sensor type, network type and sensor power source for your application. Enter the code in the Options section of the Catalog Number.

EXAMPLE: PDT1

| Sensor Type (choose one) | Network Type \& Sensor Power Source (choose one) | | |
| :--- | :--- | :---: | :---: | :---: |
| ADC
 nLight model
 nES ADCX | Daylight Dimming
 Specify 0-10V dimming ballast
 No occupancy sensing | $\mathbf{1}^{\star}$ | nLight-Enabled (Network-Ready) with Luminaire-Integrated Power Pack
 10' Cat-Se cable and splitter provided |
| PDT
 nLight model
 nES PDT7 ADCX | Daylight Dimming and/or Occupancy Detection
 Specify 0-1Ov dimming ballast for daylight dimming
 Specify fixed-output ballast for occupancy detection only
 (daylight dimming disabled) | Standalone Operation (No Networking) with Luminaire Integrated Power Pack
 No Cat-Se cable provided | |
| $\mathbf{3}^{\star}$ | nLight-Enabled (Network-Ready) with Remote nLight Power Pack or nPanel
 10^{\prime} Cat-Se cable and splitter provided
 Order required remote nLight Power Pack or nPanel
 separately through nLight (Acuity Brands Controls) | | |

For more information about the Integrated nLight Micro Sensor, its capabilities and options, download the PDF guide at: PeerlessLighting.com/nLight-Sensor-Guide *nLight-Enabled (network-ready) options include one RJ-45 connector on the luminaire, 10 feet of Cat-5e cable to control the entire luminaire row (depending on wattage/voltage limitations), and splitter. The Cat-5e cable drop is located in the same section as the sensor. For multiple zones, please contact techsupport@peerlesslighting.com.

WEIGHTS \& SUPPORT SPACING

Suspension spacing equals section length.
3 STANDARD SECTIONS

CONFIGURATIONS

Round 4 can be configured with special mitered sections to provide seamless corner illumination where two luminaires join together.
Reference Pattern Connector Guide for additional details.

PHOTOMETRICS Actual performance may differ as a result of end-user environment and application.

Indirect/Direct

All results are according \%o IESNA LM-79-2008: ADproved Method for the Electicel and Photometric Testing of Solid-State Uighting. The U.S. Department of Energy (DOE) verifies product test data and results.

Visit www.lightingfacts.com for the Label Reference Guide.
Registration Number: NJSM-AIVZMG (3/5/2013)
Model Number: RD4M4 W20/20 14120 EZ1 SCI LP335
Type: Other

RD4M4 4493L 3500K
ED
Peerless Lighting

Light Output (Lumens)	4493
Watts	59.56
Lumens per Watt (Efficacy)	75

Color Accuracy 83

All results are according \%o IESNA LM-79-2008: Approved Method for the Electical and Photometric Testing of Solld-State Lighting. The U.S. Department of Energy (DOE) verfies product test cata and results.

Visit www.lightingfacts.com for the Label Reference Guide.
Registration Number: NJSM-ZSFOH3 (8/5/2013)
Model Number: RD4M4 W40/20 14120 EZ1 SCT LP335
Type: Other

RD4M4 5937L 3500K

Peerless Lighting

All results are according so IESNA LM-79-2008: Approved Method for the Electicel and Photometric Testing of Salid-State Ughting The U.S. Department of Energy (DOE) verfies product test cata and results.

Visit www.lightingfacts.com for the Label Reference Guide.

Registration Number: NJSM-EF2EF8 (8/5/2013)
Model Number: RD4M4 W40/40 14120 EZ1 SCI LP335
Type: Other

Two LED Lumen Packages:				
Specify by Lamp Wattage W20 W40 Indirect Low High Total Delivered Lumens* 1400 2600 Total Watts* 20 40				

Construction

Extruded aluminum housing has diameter of 4".
Die-cast aluminum end caps mechanically attach with no exposed fasteners.

Source

Two LED lumen packages (High and Low).
Three available color temperature options
(3000K, 3500K and 4000K). All within 2.5
MacAdam ellipses.

Optics

Optical system consists of injection-molded primary optics, co-extruded acrylic lenses and metal reflectors. Lenses connect end to end to form a continuous line of light.

Dimming

Dimming down to black standard with eldoLED driver.

Finish

Standard finish for housing and end caps is painted aluminum or gloss white. Consult factory for custom colors.

Controls

Optional nLight-embedded controls allow for constant lumen management (N80) and facilitate simple
"plug-and-play" networking and control via CAT-5e cable.

Electrical

eldoLED light engine consists of modular LED boards and 0-10V dimming driver that dims to black rated for 50,000 hours (L_{80}) at $25^{\circ} \mathrm{C}$ ambient temperature. Driver input wattage is 20 W for 1400 delivered-lumen package and 40W for 2000 delivered-lumen package per 4' section.

Specify 120 V or 277 V. Pre-wired with 16AWG fixture wire. For special circuiting or wire gauge, consult factory. Plug-in electrical connectors included.

Environment

Damp location label option. Ambient operating temperature $\mathrm{O}^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.

Fixture Length

4^{\prime} and 8^{\prime} lengths in a single section for exact suspension spacing of 4^{\prime} and 8^{\prime}. For total luminaire length, add $3^{\prime \prime}$ for each end cap. Using internal joiners, 4^{\prime} and 8^{\prime} sections can be joined to form longer rows.

Validation

CSA/CUS listed. FCC part 15 certified. LM-79 tested. Lighting Facts partner.

Warranty

Five-year limited warranty coverage includes luminaire construction, LED light engine, driver and nLight control device. Terms and conditions apply.

Packaging

100% post-consumer recycled cardboard box. Biodegradable foam inserts and protective luminaire bag. Recycled kraft paper tape.

CATALOG NUMBER

WEIGHTS \& SUPPORT SPACING
Suspension spacing equals section length.

PLAN VIEW

PHOTOMETRICS

Actual performance may differ as a result of end-user environment and application.

W40 LP835
63 lumens per watt
2567 delivered lumens
2% up / 98% down

RD4MW 2569L 3500K
RED

Type: P3
Project:
SPECIFICATIONS
RD4M4 W40/20 8FT
D8 274 EZB

\square RD4M4	Lumen Packages:					Low lumen package $=1550$ deliverd lumens ${ }^{*}$, 20 W High lumen package $=3000$ delivered lumens*, 40W * nominal per 4'
	Specify by Lamp Wattage	W20/20	W20/40	W40/20	W40/40	
	Indirect	Low	Low	High	High	
	Direct	Low	High	Low	High	
	Total Delivered Lumens*	3100	4550	4550	6000	
	Distribution Percentage ${ }^{\text {up }} /$ down	50/50	30/70	70/30	50/50	
	Total Watts*	40	60	60	80	
SPECIFICATIONS						

Construction

Extruded aluminum housing has diameter of $4^{\prime \prime}$. Die-cast aluminum end caps mechanically attach with no exposed fasteners.

Source

Four LED lumen packages (see chart above).
Three available color temperature options
(3000K, 3500K and 4000K). All within 2.5
MacAdam ellipses.

Optics

Optical system consists of injection-molded primary optics, co-extruded acrylic lenses and metal reflectors. Lenses connect end to end to form a continuous line of light.

Dimming

Dimming down to black standard with eldoLED driver. Dual circuit (DCT) option for independent indirect and direct dimming.

CATALOG NUMBER

Finish

Standard finish for housing and end caps is painted aluminum or gloss white. Consult factory for custom colors.

Controls

Optional nLight-embedded controls allow for constant lumen management (N80) and facilitate simple "plug-and-play" networking and control via CAT-5e cable.

Electrical

eldoLED light engine consists of modular LED
boards and 0-10V dimming driver that dims to black rated for 50,000 hours (L_{80}) at $25^{\circ} \mathrm{C}$ ambient temperature. Driver input wattage is 40W for 3100 delivered-lumen package, 60 W for 4550 deliveredlumen package and 80W for 6000 delivered-lumen package per 4' section.

Specify 120 V or 277 V. Pre-wired with 16AWG fixture wire. For special circuiting or wire gauge, consult factory. Plug-in electrical connectors included.

Environment

Damp location label option. Ambient operating temperature $\mathrm{O}^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.

Fixture Length

4^{\prime} and 8^{\prime} lengths in a single section for exact suspension spacing of 4^{\prime} and 8^{\prime}. For total luminaire length, add $3^{\prime \prime}$ for each end cap. Using internal joiners, 4^{\prime} and 8^{\prime} sections can be joined to form longer rows.

Validation

CSA/CUS listed. FCC part 15 certified. LM-79 tested. Lighting Facts partner.

Warranty

Five-year limited warranty coverage includes luminaire construction, LED light engine, driver and nLight control device. Terms and conditions apply.

Packaging

100% post-consumer recycled cardboard box. Biodegradable foam inserts and protective luminaire bag. Recycled kraft paper tape.

Example: RD4M4 W40/20 48FT R8 120 EZB SCT LP835 F1/24 C032 PDT1

[^4]

INTEGRATED NLIGHT MICRO SENSOR

Determine the appropriate sensor type, network type and sensor power source for your application. Enter the code in the Options section of the Catalog Number.
EXAMPLE: PDT1

Sensor Type (choose one)		Network Type \& Sensor Power Source (choose one)	
ADC nLight model nES ADCX	Daylight Dimming Specify 0-10V dimming ballast No occupancy sensing	1^{\star}	nLight-Enabled (Network-Ready) with Luminaire-Integrated Power Pack 10' Cat-5e cable and splitter provided
		2	Standalone Operation (No Networking) with Luminaire Integrated Power Pack No Cat-5e cable provided
PDT nLight model nES PDT7 ADCX	Daylight Dimming and/or Occupancy Detection Specify 0-10v dimming ballast for daylight dimming Specify fixed-output ballast for occupancy detection only (daylight dimming disabled)	3*	nLight-Enabled (Network-Ready) with Remote nLight Power Pack or nPanel 10' Cat-5e cable and splitter provided Order required remote nLight Power Pack or nPanel separately through nLight (Acuity Brands Controls)

For more information about the Integrated nLight Micro Sensor, its capabilities and options, download the PDF guide at: PeerlessLighting.com/nLight-Sensor-Guide *nLight-Enabled (network-ready) options include one RJ-45 connector on the luminaire, 10 feet of Cat-5e cable to control the entire luminaire row (depending on wattage/voltage limitations), and splitter. The Cat-5e cable drop is located in the same section as the sensor. For multiple zones, please contact techsupport@peerlesslighting.com.

WEIGHTS \& SUPPORT SPACING

Suspension spacing equals section length.
3 STANDARD SECTIONS

CONFIGURATIONS

Round 4 can be configured with special mitered sections to provide seamless corner illumination where two luminaires join together.
Reference Pattern Connector Guide for additional details.

PHOTOMETRICS Actual performance may differ as a result of end-user environment and application.

Indirect/Direct

All results are according to IESNA LM-79-2008: Approved Method for the Electisel and Photometric Testing of Solid-State Uighting. The U.S. Department of Energy (DOE) verfies product test data and results.

> Visit www.lightingfacts.com for the Label Reference Guide.

Registration Number. NJSM-AIVZMG (8/5/2013)
Model Number: RD4M4 W20/20 14120 EZ1 SCT LPg35
Type Other

RD4M4 4493L 3500K
ED
Peerless Lighting

Light Output (Lumens)	4493
Watts	59.56
Lumens per Watt (Efficacy)	75

Color Accuracy

All results are according so IESNA LM-79-2008: Approved Method for the Electincol and Photometric Testing of Solld-State Lighting. The U.S. Department of Energy (DOE) verfies product test cata and results.

Visit www.lightingfacts.com for the Label Reference Guide.
Registration Number: NJSM-ZSFOH3 (8/5/2013)
Model Number: RD4M4 W40/20 14120 EZ1 SCT LP835
Type: Other

RD4M4 5937L 3500K

Peerless Lighting

All results are according so IESNA LM-79-2008: Approved Method for the Elicticel and Photometric Testing of Solid-State Lighting The U.S. Department of Energy (DOE) verifies product test cata and results.

Visit www.lightingfacts.com for the Label Reference Guide.
Registration Number: NJSM-EF2EF8 (8/5/2013)
Model Number: RD4M4 W40/40 14120 EZ1 SCI LP335
Type: Other

6 inch LED recessed narrow beam downlight specially designed for LED technology. Two-stage reflector system produces smooth distribution with excellent light control and low aperture brightness. Lumen packages include 1000, 1500, 2000 and 3000 lumens with color temperatures of $2700 \mathrm{~K}, 3000 \mathrm{~K}, 3500 \mathrm{~K}, 4000 \mathrm{~K}$.

SPECIFICATION FEATURES

Lower Shielding Reflector

Self-flanged, spun .050" thick aluminum lower reflector in combination with a lensed upper optical chamber provides superior lumen output with minimal source brightness. Available in all Portfolio Alzak ${ }^{\circledR}$ finishes.

Trim Retention

Lower reflector is retained with two torsion springs holding the flange tightly to the finished ceiling surface.

Plaster Frame / Collar

New Construction Housing: Die cast aluminum 1-1/2" deep collar accommodates ceiling materials up to $2^{\prime \prime}$.

Universal Mounting Bracket Accepts 1/2" EMT, C channel and bar hangers and adjusts $5^{\prime \prime}$ vertically from above and below the ceiling.

Junction Box

(4) $1 / 2^{\prime \prime}$ and (2) $3 / 4^{\prime \prime}$ trade size pry outs positioned to allow straight
conduit runs. Listed for (8) \#12 AWG (four in, four out) $90^{\circ} \mathrm{C}$ conductors and feed thru branch wiring.

Thermal

Extruded aluminum heat sink conducts heat away from the LED module for optimal performance and long life.

LED

LED system contains a plurality of high brightness white LED's combined with a high reflectance upper reflector and convex transitional lens producing even distribution with no pixilation. Rated for 50,000 hours at 70\% lumen maintenance. Auto resetting, thermally protected, LED's are turned off when safe operating temperatures are exceeded. Color variation within 3-step MacAdam ellipses. Flexible disconnect allows for tool-less replacement of LED engine from below ceiling. Available in 80 or 90 CRI .

Cooper Lighting

EXAMPLE: LD6A15D010TE ERN6A15835 6LNOLI=6" LED Narrow Beam Reflector, 1500 Lumen 3,500 K Color with Universal 120-277V, 0-10 Driver

Housing	Lumens ${ }^{1}$	${ }^{1}$ Driver	Options	Power Module	CRI	Color
LD6A=6"Aperture, LD6ACP=6"Aperture, Remodel Chicago		$1000,1500,2000 \text { and } 3000 \text { Lumen }$ D010TE=120-277V 0-10V 10\%	EMBOD=Bodine ${ }^{*}$ Emergency Module with Remote Test Switch IEMBOD=Bodine ${ }^{\bullet}$ Emergency Module with Integral Test Switch	ERN6A10=6", 1000 LumenModule for Narrow BeamReflector	$8=80 \mathrm{CRI}$	
		D010TE=120-277V 0-10V 10\% Dimming or Trailing Edge 120V Dimming			$9=90 \mathrm{CRI}$	$30=3000^{\circ} \mathrm{K}$
		D5LT=Fifth Light ${ }^{\text {® }}$ (DALI) Dimming 1-100\%		ERN6A15=6", 1500 Lumen Module for Narrow Beam		$40=4000^{\circ} \mathrm{K}$
10=1000 Lumens		DE010=1 to 100\% Dimming, 120-277V $50 / 60 \mathrm{~Hz}, 0-10 \mathrm{~V}$				27CP $=2700^{\circ} \mathrm{K}$, Chicago Plenum
15=1500 Lumens		50/60Hz, 0-10V Dimming 120-277V		Reflector		30CP $=3000^{\circ} \mathrm{K}$, Chicago Plenum $35 \mathrm{CP}=3500^{\circ} \mathrm{K}$, Chicago Plenum $40 \mathrm{CP}=4000^{\circ} \mathrm{K}$, Chicago Plenum
20=2000 Lumens		DL3=1 to 100\% Dimming, 120-277V Lutron ${ }^{\circ}$ Hi-Lume, Ecosystem or 3 Wire		ERN6A20=6", 2000 Lumen		
30=3000 Lumens		DLT=1 to 100\% Dimming, 120V Lutron ${ }^{\text {® }}$		Reflector		
		Hi-Lume Forward Phase Dimming		ERN6A30=6", 3000 Lumen		
		DMX=DMX Dimming 1-100\%		Module for Narrow Beam		
		1000, 1500 and 2000 Lumen				
		D010TR=120-277V 0-10V 10\% Dimming or Leading Edge 120V Dimming				

Reflector	Finish		Options	Accessories	
		B=Specular Black W=Gloss White			
6LNO=6" Narrow Reflector, PolymerTrim Ring	LI=Specular Clear H=Semi-Specular Clear WMH=Warm Haze G=Specular Gold WH=Wheat WHH=Wheat Haze GP=Graphite GPH=Graphite Haze		Self-Flanged Only WF=White Painted Flange	HB26=C-channel Bar Hanger, 26" Long, Pair	HSA6=Slope Adapter for 6" Aperture Housings, Specify Slope
6LN1=6" Narrow Reflector, Self-flanged				HB50=C-channel Bar Hanger, 50" Long, Pair	TRM6=MetalTrim Ring, Specify Color ${ }^{2}$ TRR6=Rimless Trim Ring ${ }^{2}$
6LIVUE= = ' Narrow Retlector,				RMB22=Wood Joist Bar Hanger, D	DT6=Deco Trim ${ }^{2}$
PolymerTrim Ring for use with				22" Long, Pair	LGSKT6IP66=IP66 Gasket Kit
IEM Integral Emergency Option				H347=347 to 120V Step Down	
6LN1E=6" Narrow Reflector,				Transformer, 75VA	
Self-flanged for use with IEM				H347200=347 to 120V Step Down	
Integral Emergency Option				Transformer, 200VA Housings, Specify Slope	

Notes: 1 Nominal Lumens will vary depending on selected color, driver and reflector finish.
2 Order trim with polymer trim ring (Consult specification sheet for color ordering information and options).
3 Not available with Chicago Plenum.

ENERGY

ENERGY DATA			
Sound Rating: Class A standards			
(Values at non-dimming line voltage)			
Minimum Starting Temperature: $-30^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right)$			
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)			
Input Voltage: UNV (120V - 277V)			
Power Factor: >0.90 (at nominal input 120-277 VAC \& 100\% of Rated Output Power)			
3000 Lumen D010TE		2000 Lumen D010TE	
Input Power: 43.6W	THD: <17\%	Input Power: 31.5W	THD: <20\%
120V Input Current. .37A	277V Input Current. 16A	120V Input Current: 27A	277V Input Current: 12A
Maximum Non-IC Ambient Continuous		Maximum Non-IC Ambient Continuous	
Input Frequency: 50/60 Hz		Input Frequency: $50 / 60 \mathrm{~Hz}$	
1500 Lumen DO10TE		1000 Lumen D010TE	
Input Power: 22.4W	THD: <20\%	Input Power: 14.1W	THD: <20\%
120V Input Current. .12A	277V Input Current. .09A	120V Input Current: 12A	277V Input Current: .06A
Maximum Non-IC Ambient Continuous		Maximum Non-IC Ambient Continuous	
Input Frequency: $50-60 \mathrm{~Hz}$		Input Frequency: $50-60 \mathrm{~Hz}$	

	120V		277V	
Lumens	Inrush (A)	Duration (ms)	$\operatorname{Inrush}(\mathrm{A})$	Duration (ms)
$900 / 1000$	0.486	0.4	0.848	0.182
$1300 / 1500$	0.717	1.58	0.531	1.24
$1800 / 2000$	0.832	0.405	1.25	0.788
$2800 / 3000$	1.09	0.3	1.23	0.294

PHOTOMETRICS

Test Number	P98195
LD6A15D010TE	ERN6A835
6LN1H	
Lumens	1277
Efficacy	$57 \mathrm{Lm} / \mathrm{W}$
Watts	22.4
CCT	3500 K
SC	0.74

CONE OF LIGHT			55	22
Distance	Initial		65	8
Fixture to	Footcandles		75	3
Lighted Plane	at Nadir		85	0
5'5"	55	4.0	90	0
$7{ }^{\prime}$	34	5.0		

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	8959
55	2548
65	1158
75	756
85	0

PHOTOMETRICS

CANDELA TABLE	
Degrees Vertical Candela 0 4226 5 3654 15 1689 25 823 35 374 45 45 55 3 65 1 75 0 85 0 90 0	

ZONAL LUMEN SUMMARY		
Zone	Lumens	\%Fixture
$0-30$	1171	80.8
$0-40$	1401	96.6
$0-60$	1449	99.9
$0-90$	1450	100
$90-180$	0	0
$0-180$	1450	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	4133
55	353
65	154
75	0
85	0

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	1740	78.8
$0-40$	2106	95.4
$0-60$	2207	99.9
$0-90$	2209	100
$90-180$	0	0
$0-180$	2209	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	6784
55	423
65	188
75	0
85	0

Test Number P97571		
LD6A30DE010 ERN6A30835 6LN1LI		
Lumens	2685 Lm	
Efficacy	$61.5 \mathrm{Lm} / \mathrm{W}$	
Watts	43.6 W	
CCT	3500 K	
SC	0.46	
CONE OF LIGHT		
Distance Fixture to Lighted Plane	Initial Footcandles at Nadir	Beam Diameter
10^{\prime}		5
15 20 1		7 9.5
25^{\prime}	11	12
30^{\prime}	7	14

CANDELA TABLE	
Degrees Vertical	Candela
0	6704
5	6010
15	3137
25	1502
35	721
45	125
55	6
65	2
75	0
85	0
90	0

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	2116	79
$0-40$	2560	95.5
$0-60$	2683	100
$0-90$	2685	100
$90-180$	0	0
$0-180$	2685	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	8244
55	513
65	221
75	0
85	0

PHOTOMETRICS

CANDELA TABLE		ZONAL LUMEN SUMMARY		
Degrees	Candela	Zone	Lumens	\%Fixture
Vertical		0-30	1595	68.5
0	2888	0-40	2103	90.5
5	2814	0-60	2307	99
15	2220	0-90	2327	100
25	1564	90-180	0	0
35	822	0-180	2327	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	17622
55	4550
65	2192
75	983
85	973

EMBOD MULTIPLIER
900/1000 Lumen $=.50$
$1300 / 1500$ Lumen $=.31$
1800/2000 Lumen $=.22$
2800/3000 Lumen $=.16$

CCT Multiplication Factors		CCT [K]	Multiplier from 3500K	$80->90$ CRI
80 CRI	1000 Lumen	2700	0.93	
		3000	0.99	
		3500	1.00	
		4000	1.01	
	1500 Lumen	2700	0.93	
		3000	0.99	
		3500	1.00	
		4000	1.01	
90 CRI	1000 Lumen	2700	0.88	0.79
		3000	0.95	0.80
		3500	1.00	0.84
		4000	1.03	0.86
	1500 Lumen	2700	0.88	0.79
		3000	0.94	0.79
		3500	1.00	0.84
		4000	1.03	0.86

6 inch LED recessed wide beam downlight specially designed for LED technology. Two-stage reflector system produces smooth distribution with excellent light control and low aperture brightness. Lumen packages include 1000, 1500, 2000, and 3000 lumens with color temperatures of 2700K, 3000K, 3500K, 4000K.

Catalog \#	LD6A30DL3 ERW6A30835 6LW1LI	Type	
	R10		
Project			
Comments		Date	
Prepared by			

SPECIFICATION FEATURES

Lower Shielding Reflector

Self-flanged, spun .050" thick aluminum lower reflector in combination with a lensed upper optical chamber provides superior lumen output with minimal source brightness. Available in all Portfolio Alzak ${ }^{\circledR}$ finishes.

Trim Retention

Lower reflector is retained with two torsion springs holding the flange tightly to the finished ceiling surface.

Plaster Frame / Collar

New Construction Housing: Die cast aluminum 1-1/2" deep collar accommodates ceiling materials up to $2^{\prime \prime}$.

Universal Mounting Bracket

 Accepts 1/2" EMT, C channel and bar hangers and adjusts $5^{\prime \prime}$ vertically from above and below the ceiling.
Junction Box

(4) $1 / 2^{\prime \prime}$ and (2) $3 / 4^{\prime \prime}$ trade size pry outs positioned to allow straight conduit runs. Listed for (8) \#12 AWG (four in, four out) $90^{\circ} \mathrm{C}$ conductors and feed thru branch wiring.

Thermal

Extruded aluminum heat sink conducts heat away from the LED module for optimal performance and long life.

LED

LED system contains a plurality of high brightness white LED's combined with a high reflectance upper reflector and convex transitional lens producing even distribution with no pixilation. Rated for 50,000 hours at 70\% lumen maintenance. Auto resetting, thermally protected, LED's are turned off when safe operating temperatures are exceeded. Color variation within 3-step MacAdam ellipses. Flexible disconnect allows for tool-less replacement of LED engine from below ceiling. Available in 80 or 90 CRI.

Driver

Combination 120-277V 0-10V or 120 V trailing edge phase cut driver provides flicker free dimming from 100% to 10%. Optional 1\% 0-10V, Fifth Light, DMX or Lutron® Ecosystem. Driver can be serviced from above or through the aperture.

Cooper Lighting
by E

EXAMPLE: LD6A15D010TE ERW6A15835 6LW1LI=6" LED Wide Reflector Lens, 1500 Lumen 3,500 K Color with Universal 120-277V, 0-10 Driver

Notes: 1 Nominal delivered Lumens will vary depending on selected color, driver and reflector finish.
2 Order trim with polymer trim ring (Consult specification sheet for color ordering information and options).
3 Not available with Chicago Plenum.
4 Not CSA approved.

PHOTOMETRICS

Test Number	P98323
ERW6A835	6LW1H
Lumens	1463
Efficacy	$65.3 \mathrm{Lm} /$ W
Watts	22.4
CCT	3500 K
SC	1.13

CONE OF LIGHT

Distance Fixture to Lighted Plane	Initial Footcandles at Nadir	Beam Diameter
$5^{\prime} 5^{\prime \prime}$	33	6.0
77^{\prime}	20	7.8
8^{\prime}	16	9.0
9^{\prime}	12	10.0
10^{\prime}	10	11.2
12^{\prime}	7	13.4

CANDELA TABLE	
Degrees Candela Vertical 1008 0 1002 5 956 15 845 25 602 35 281 45 98 55 19 65 19 75 5 85 0 90 0	

ZONAL LUMEN SUMMARY		
Zone	Lumens	\%Fixture
$0-30$	750	51.3
$0-40$	1122	76.7
$0-60$	1434	98
$0-90$	1463	100
$90-180$	0	0
$0-180$	1463	100

LUMINANGE	
Average Candella Degrees	Average 0° Luminance
45	25954
55	11090
65	2964
75	1210
85	0

CANDELA TABLE	
Degrees Vertical	Candela
0	1000
5	1021
15	1142
25	1022
35	663
45	267
55	39
65	2
75	0
85	0
90	0

ZONAL LUMEN SUMMARY		
Zone	Lumens	\%Fixture
$0-30$	885	57
$0-40$	1294	83.4
$0-60$	1548	99.7
$0-90$	1552	100
$90-180$	0	0
$0-180$	1552	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	24598
55	4425
65	340
75	277
85	0

Test Number	P98615
LD6A20D010TE ERW6A835 6LW1H	
Lumens	2179
Efficacy	69.2 Lm/W
Watts	31.5
CCT	3500 K
SC	1.13

CONE OF LIGHT

Distance	Initial	Beam			
Fixture to	Footcandles	Diameter			
Lighted Plane	at Nadir				
$5^{\prime \prime}$	49	6.0			
77^{\prime}	30	7.8		424	
:---	:---				
55	147				
65	30				
75	6				
85	1				
90	0				

CANDELA TABLE	
Degrees Vertical Candela 0 1491 5 1486 15 1421 25 1258 35 891 45 424 55 147 65 30 75 6 85 1 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	\%Fixture
$0-30$	1114	51.1
$0-40$	1664	76.4
$0-60$	2134	98.0
$0-90$	2179	100
$90-180$	0	0
$0-180$	2179	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	39074
55	16709
65	4662
75	1638
85	823

Test Number	P97715
LD6A20D010TE	ERW6A835 6LW1LI
Lumens	2349
Efficacy	74.6 Lm/W
Watts	31.5
CCT	3500 K
SC	1.17

CONE OF LIGHT

Distance Fixture to Lighted Plane	Initial Footcandles at Nadir	Beam Diameter
$5^{\prime \prime} 5^{\prime \prime}$	52	6.4
7^{\prime}	32	8.0
8^{\prime}	24	9.2
9^{\prime}	19	10.4
10^{\prime}	15	11.6
12^{\prime}	11	14.0

CANDELA TABLE	
Degrees Vertical Candela 0 1587 5 1588 15 1641 25 1458 35 989 45 453 55 93 65 5 75 2 85 0 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	1280	54.5
$0-40$	1893	80.6
$0-60$	2337	99.5
$0-90$	2349	100
$90-180$	0	0
$0-180$	2349	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	35128
55	8927
65	687
75	381
85	0

| CANDLEPOWER DISTRIBUTION | | |
| :---: | :---: | :---: | :---: | :---: |
| 1300 | Downlight | |
| 1950 | | |

ZONAL LUMEN SUMMARY			LUMINANCE	
Zone	Lumens	\%Fixture	Average Candella	Average 0°
0-30	1546	54.5	Degrees	Luminance
0-40	2287	80.5	45	42439
0-60	2824	99.5	55	10791
0-90	2838	100	65	830
90-180	0	0	75	445
0-180	2838	100	85	0

CONE OF LIGHT

Distance	Initial	Beam			
Fixture to	Footcandles	Diameter			
Lighted Plane	at Nadir				
$7 \prime$	39	8			
$8 '$	30	9		45	547
:---	:---:				
55	113				
65	6				
75	2				
85	0				
90	0				

Test Number	P98631
LD6A30DE010	ERW6A30835 6LW1H
Lumens	2633 Lm
Efficacy	$60.3 \mathrm{Lm} /$ W
Watts	43.6 W
CCT	3500 K
SC	1.1

CANDELA TABLE	
Degrees Vertical Candela 0 1802 5 1795 15 1717 25 1520 35 1077 45 512 55 178 65 37 75 8 85 1 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	1347	51
$0-40$	2011	76.5
$0-60$	2579	98
$0-90$	2633	100
$90-180$	0	0
$0-180$	2633	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	47212
55	20189
65	5650
75	1966
85	973

CONE OF LIGHT

Distance Fixture to Lighted Plane	Initial Footcandles at Nadir	Beam Diameter
$7{ }^{\prime}$	37	9
8^{\prime}	28	9
9^{\prime}	22	10
10^{\prime}	18	10
12^{\prime}	12.5	13.5
15^{\prime}	8	17

EMBOD MULTIPLIER
$900 / 1000$ Lumen $=.50$
$1300 / 1500$ Lumen $=.31$
1800/2000 Lumen $=.22$
2800/3000 Lumen $=.16$

6 inch LED recessed medium beam downlight with 50° cut off specially designed for LED technology. Two-stage reflector system produces smooth distribution with excellent light control and low aperture brightness. Lumen packages include 1000, 1500, 2000 and 3000 lumens with color temperatures of $2700 \mathrm{~K}, 3000 \mathrm{~K}, 3500 \mathrm{~K}, 4000 \mathrm{~K}$.

Catalog \#	LD6A20DL3 ERN6A20835 6LM1LI	Type	
	R11		
Project			
Comments		Date	
Prepared by			

SPECIFICATION FEATURES

Lower Shielding Reflector

 Self-flanged, spun .050" thick aluminum lower reflector in combination with a lensed upper optical chamber provides superior lumen output with minimal source brightness. Available in all Portfolio Alzak ${ }^{\circledR}$ finishes.
Trim Retention

Lower reflector is retained with two torsion springs holding the flange tightly to the finished ceiling surface.

Plaster Frame / Collar

New Construction Housing: Die cast aluminum 1-1/2" deep collar accommodates ceiling materials up to $2^{\prime \prime}$.

Universal Mounting Bracket

Accepts 1/2" EMT, C channel and bar hangers and adjusts $5^{\prime \prime}$ vertically from above and below the ceiling.

Junction Box

(4) $1 / 2^{\prime \prime}$ and (2) $3 / 4^{\prime \prime}$ trade size pry outs positioned to allow straight
conduit runs. Listed for (8) \#12 AWG (four in, four out) $90^{\circ} \mathrm{C}$ conductors and feed thru branch wiring.

Thermal

Extruded aluminum heat sink conducts heat away from the LED module for optimal performance and long life.

LED

LED system contains a plurality of high brightness white LED's combined with a high reflectance upper reflector and convex transitional lens producing even distribution with no pixilation. Rated for 50,000 hours at 70\% lumen maintenance. Auto resetting, thermally protected, LED's are turned off when safe operating temperatures are exceeded. Color variation within 3-step MacAdam ellipses. Flexible disconnect allows for tool-less replacement of LED engine from below ceiling. Available in 80 or 90 CRI.

Driver

Combination $120-277 \mathrm{~V} 0-10 \mathrm{~V}$ or 120 V trailing edge phase cut driver provides flicker free dimming from 100% to 10%. Optional 1\% 0-10V, Fifth Light, DMX or Lutron® Ecosystem. Driver can be serviced from above or through the aperture.
Code Compliance
Thermally protected and cULus listed for protected wet locations. IP66 rated when used with IP66 gasket kit accessory. Optional City of Chicago environmental air (CCEA) marking for plenum applications. EMI/RFI emissions per FCC 47CFR Part 18 Class B consumer limits. Non-IC rated Insulation must be kept 3" from top and sides of housing. RoHS Compliant. Photometric testing completed in accordance with IES LM 79 standards. LED life testing completed in accordance with LM 80 standards.

Warranty

5 year warranty on LED housings, LED Modules and LED Trims.

TOP VIEW - NEW CONSTRUCTION

TOP VIEW - NEW CONSTRUCTION WITH BATTERY

Cooper Lighting

EXAMPLE: LD6A15D010TE ERM6A15835 6LMOLI=6" LED Medium Beam Reflector, 1500 Lumen 3,500 K Color with Universal 120 - 277 V, 0 - 10 Driver

Notes: 1 Nominal Lumens will vary depending on selected color, driver and reflector finish.
2 Order trim with polymer trim ring (Consult specification sheet for color ordering information and options).
3 Not available with Chicago Plenum.

ENERGY

ENERGY DATA			
Sound Rating: Class A standards			
(Values at non-dimming line voltage)			
Minimum Starting Temperature: $-30^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right)$			
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)			
Input Voltage: UNV (120V-277V)			
Power Factor: >0.90 (at nominal input 120-277 VAC \& 100\% of Rated Output Power)			
3000 Lumen D010TE		2000 Lumen D010TE	
Input Power: 43.6W	THD: <17\%	Input Power: 31.5W	THD: <20\%
120V Input Current. 37A	277V Input Current. 16A	120V Input Current: 27A	277V Input Current: 12A
Maximum Non-IC Ambient Continuous		Maximum Non-IC Ambient Continuous	
Input Frequency: 50/60Hz		Input Frequency: $50 / 60 \mathrm{~Hz}$	
1500 Lumen D010TE		1000 Lumen D010TE	
Input Power: 22.4W	THD: <20\%	Input Power: 14.1W	THD: <20\%
120V Input Current. 12A	277V Input Current. .09A	120V Input Current: .12A	277V Input Current: .06A
Maximum Non-IC Ambient Continuous		Maximum Non-IC Ambient Continuous	
Input Frequency: $50-60 \mathrm{~Hz}$		Input Frequency: $50-60 \mathrm{~Hz}$	

	120V		277V	
Lumens	Inrush (A)	Duration (ms)	Inrush (A)	Duration (ms)
$900 / 1000$	0.486	0.4	0.848	0.182
$1300 / 1500$	0.717	1.58	0.531	1.24
$1800 / 2000$	0.832	0.405	1.25	0.788
$2800 / 3000$	1.09	0.3	1.23	0.294

PHOTOMETRICS

Test Number	P98227
LD6A15D010TE	ERM6A835 6LM1H
Lumens	1347
Efficacy	60.1 Lm/W
Watts	22.4
CCT	3500 K
SC	0.92

CONE OF LIGHT

Distance Fixture to Lighted Plane	Initial Footcandles at Nadir	Beam Diameter
$5^{\prime} 55^{\prime \prime}$	48	5.0
$7{ }^{\prime}$	30	6.5
8^{\prime}	22	7.0
9^{\prime}	18	8.0
10^{\prime}	14	9.0
12^{\prime}	10	11.0

CANDELA TABLE	
Degrees Vertical Candela 0 1468 5 1436 15 1238 25 969 35 468 45 116 55 25 65 8 75 2 85 0 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	919	68.2
$0-40$	1213	90.1
$0-60$	1336	99.2
$0-90$	1347	100
$90-180$	0	0
$0-180$	1347	100

LUMINANCE

Average Candella Degrees	Average 0° Luminance
45	10749
55	2889
65	1158
75	378
85	0

Lumen Output Bodine:...Emergency . 45

Test Number	P98531
LD6A20D010TE	ERM6A835 6LM1H
Lumens	2018
Efficacy	64.1 Lm/W
Watts	31.5
CCT	3500 K
SC	0.91

CONE OF LIGHT		
Distance Fixture to Lighted Plane	Initial Footcandles at Nadir	Beam Diameter
$5^{\prime \prime} 5^{\prime \prime}$	73	4.8
7 '	45	6.2
8^{\prime}	34	7.2
9^{\prime}	27	8.0
10^{\prime}	22	9.0
12^{\prime}	15	10.8

CANDLEPOWER DISTRIBUTION

CANDELA TABLE	
Degrees Vertical	Candela
0	2212
5	2164
15	1855
25	1435
35	698
45	180
55	40
65	12
75	3
85	1
90	0

ZONAL LUMEN SUMMARY

Zone	Lumens	\%Fixture
$0-30$	1370	67.9
$0-40$	1810	89.7
$0-60$	2001	99.2
$0-90$	2018	100
$90-180$	0	0
$0-180$	2018	100

LUMINANCE

Average Candella Degrees	Average 0° Luminance
45	16654
55	4504
65	1775
75	781
85	749

CANDELA TABLE	
Degrees Vertical	Candela
0	2018
5	2098
15	1908
25	1097
35	381
45	29
55	4
65	1
75	0
85	0
90	0

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	1225	81.2
$0-40$	1471	97.5
$0-60$	1507	99.9
$0-90$	1509	100
$90-180$	0	0
$0-180$	1509	100

LUMINANCE

Average Candella Degrees	Average 0° Luminance
45	2676
55	455
65	154
75	0
85	0

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	1768	76.9
$0-40$	2204	95.8
$0-60$	2296	99.8
$0-90$	2301	100
$90-180$	0	0
$0-180$	2301	100

LUMINANCE

Average Candella Degrees	Average 0° Luminance
45	6865
55	887
65	487
75	376
85	0

Test Number	P97647
LD6A30DE010	ERM6A30835 6LM1LI
Lumens	2809 Lm
Efficacy	$64.4 \mathrm{Lm} / \mathrm{W}$
Watts	43.6 W
CCT	3500 K
SC	0.8

CONE OF LIGHT			55	11
Distance	Initial		65	4
Fixture to	Footcandles	${ }_{\text {Beam }}$	75	2
Lighted Plane	at Nadir	Diameter	85	0
$7{ }^{\prime}$	73	6	90	0

CANDELA TABLE	
Degrees Vertical	Candela
0	3589
5	3557
15	3159
25	2082
35	848
45	104
55	11
65	4
75	2
85	0
90	0

ZONAL LUMEN SUMMARY

Zone	Lumens	\%Fixture
$0-30$	2159	77
$0-40$	2691	96
$0-60$	2803	100
$0-90$	2809	100
$90-180$	0	0
$0-180$	2809	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	8385
55	1087
65	595
75	464
85	0

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	1672	68
$0-40$	2210	90
$0-60$	2444	99
$0-90$	2464	100
$90-180$	0	0
$0-180$	2464	100

EMBOD MULTIPLIER
900/1000 Lumen= 50
1300/1500 Lumen= . 31
1800/2000 Lumen= .22
2800/3000 Lumen= $=16$

CCT Multiplication Factors		CCT [K]	Multiplier from 3500K	$80->90$ CRI
80 CRI	1000 Lumen	2700	0.93	
		3000	0.99	
		3500	1.00	
		4000	1.01	
	1500 Lumen	2700	0.93	
		3000	0.99	
		3500	1.00	
		4000	1.01	
90 CRI	1000 Lumen	2700	0.88	0.79
		3000	0.95	0.80
		3500	1.00	0.84
		4000	1.03	0.86
	1500 Lumen	2700	0.88	0.79
		3000	0.94	0.79
		3500	1.00	0.84
		4000	1.03	0.86

6 inch LED recessed wide beam downlight specially designed for LED technology. Two-stage reflector system produces smooth distribution with excellent light control and low aperture brightness. Lumen packages include 1000, 1500, 2000, and 3000 lumens with color temperatures of 2700K, 3000K, 3500K, 4000K.

Catalog \#	LD6A10DL3 ERW6A10835 6LW1LI	Type
	R2	
Project		
Comments		Date
Prepared by		

SPECIFICATION FEATURES

Lower Shielding Reflector

Self-flanged, spun .050" thick aluminum lower reflector in combination with a lensed upper optical chamber provides superior lumen output with minimal source brightness. Available in all Portfolio Alzak ${ }^{\circledR}$ finishes.

Trim Retention

Lower reflector is retained with two torsion springs holding the flange tightly to the finished ceiling surface.

Plaster Frame / Collar

New Construction Housing: Die cast aluminum 1-1/2" deep collar accommodates ceiling materials up to $2^{\prime \prime}$.

Universal Mounting Bracket

 Accepts 1/2" EMT, C channel and bar hangers and adjusts $5^{\prime \prime}$ vertically from above and below the ceiling.
Junction Box

(4) $1 / 2^{\prime \prime}$ and (2) $3 / 4^{\prime \prime}$ trade size pry outs positioned to allow straight conduit runs. Listed for (8) \#12 AWG (four in, four out) $90^{\circ} \mathrm{C}$ conductors and feed thru branch wiring.

Thermal

Extruded aluminum heat sink conducts heat away from the LED module for optimal performance and long life.

LED

LED system contains a plurality of high brightness white LED's combined with a high reflectance upper reflector and convex transitional lens producing even distribution with no pixilation. Rated for 50,000 hours at 70\% lumen maintenance. Auto resetting, thermally protected, LED's are turned off when safe operating temperatures are exceeded. Color variation within 3-step MacAdam ellipses. Flexible disconnect allows for tool-less replacement of LED engine from below ceiling. Available in 80 or 90 CRI.

Driver

Combination 120-277V 0-10V or 120 V trailing edge phase cut driver provides flicker free dimming from 100% to 10%. Optional 1\% 0-10V, Fifth Light, DMX or Lutron® Ecosystem. Driver can be serviced from above or through the aperture.

$\underset{\text { by E:ToN }}{\text { Cooper Lighting }}$
by E

EXAMPLE: LD6A15D010TE ERW6A15835 6LW1LI=6" LED Wide Reflector Lens, 1500 Lumen 3,500 K Color with Universal 120-277V, 0-10 Driver

Reflector	Finish		Options	Accessories	
6LW0=6" Wide Beam Reflector, Polymer Trim Ring 6LW1=6" Wide Beam Reflector, Self-flanged	LI=Specular Clear H=Semi-Specular Clear WMH=Warm Haze G=Specular Gold WH=Wheat WHH=Wheat Haze GP=Graphite GPH=Graphite Haze	$B=$ Specular Black W=Gloss White 6LW0 Only BB=Black Baffle WB=White Baffle	Self-flanged Only WF=White Painted Flange	HB26=C-channel Bar Hanger, 26" Long, Pair HB50=C-channel Bar Hanger, 50" Long, Pair RMB22=Wood Joist Bar Hanger, 22" Long, Pair H347=347 to 120V Step Down Transformer, 75VA H347200=347 to 120V Step Down Transformer, 200VA Housings, Specify Slope	HSA6=Slope Adapter for 6" Aperture Housings, Specify Slope TRM6=MetalTrim Ring, Specify Color ${ }^{2}$ TRR6=Rimless Trim Ring ${ }^{2}$ DT6=Deco Trim ${ }^{2}$ LGSKT6IP66=IP66 Gasket Kit

Notes: 1 Nominal delivered Lumens will vary depending on selected color, driver and reflector finish.
2 Order trim with polymer trim ring (Consult specification sheet for color ordering information and options).
3 Not available with Chicago Plenum.
4 Not CSA approved.

PHOTOMETRICS

Test Number	P98323
ERW6A835	6LW1H
Lumens	1463
Efficacy	$65.3 \mathrm{Lm} /$ W
Watts	22.4
CCT	3500 K
SC	1.13

CONE OF LIGHT

Distance Fixture to Lighted Plane	Initial Footcandles at Nadir	Beam Diameter
$5^{\prime} 5{ }^{\prime}$	33	6.0
$7{ }^{\prime}$	20	7.8
8^{\prime}	16	9.0
9^{\prime}	12	10.0
10^{\prime}	10	11.2
12^{\prime}	7	13.4

CANDELA TABLE	
Degrees Candela Vertical 1008 0 1002 5 956 15 845 25 602 35 281 45 98 55 19 65 19 75 5 85 0 90 0	

ZONAL LUMEN SUMMARY		
Zone	Lumens	\%Fixture
$0-30$	750	51.3
$0-40$	1122	76.7
$0-60$	1434	98
$0-90$	1463	100
$90-180$	0	0
$0-180$	1463	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	25954
55	11090
65	2964
75	1210
85	0

CANDELA TABLE	
Degrees Vertical	Candela
0	1000
5	1021
15	1142
25	1022
35	663
45	267
55	39
65	2
75	0
85	0
90	0

ZONAL LUMEN SUMMARY		
Zone	Lumens	\%Fixture
$0-30$	885	57
$0-40$	1294	83.4
$0-60$	1548	99.7
$0-90$	1552	100
$90-180$	0	0
$0-180$	1552	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	24598
55	4425
65	340
75	277
85	0

Test Number	P98615
LD6A20D010TE ERW6A835 6LW1H	
Lumens	2179
Efficacy	69.2 Lm/W
Watts	31.5
CCT	3500 K
SC	1.13

CONE OF LIGHT

Distance	Initial	Beam			
Fixture to	Footcandles	Diameter			
Lighted Plane	at Nadir				
$5^{\prime \prime}$	49	6.0			
77^{\prime}	30	7.8		424	
:---	:---				
55	147				
65	30				
75	6				
85	1				
90	0				

CANDELA TABLE	
Degrees Vertical Candela 0 1491 5 1486 15 1421 25 1258 35 891 45 424 55 147 65 30 75 6 85 1 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	\%Fixture
$0-30$	1114	51.1
$0-40$	1664	76.4
$0-60$	2134	98.0
$0-90$	2179	100
$90-180$	0	0
$0-180$	2179	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	39074
55	16709
65	4662
75	1638
85	823

Test Number	P97715
LD6A20D010TE	ERW6A835 6LW1LI
Lumens	2349
Efficacy	74.6 Lm/W
Watts	31.5
CCT	3500 K
SC	1.17

CONE OF LIGHT

Distance Fixture to Lighted Plane	Initial Footcandles at Nadir	Beam Diameter
$5^{\prime \prime} 5^{\prime \prime}$	52	6.4
7^{\prime}	32	8.0
8^{\prime}	24	9.2
9^{\prime}	19	10.4
10^{\prime}	15	11.6
12^{\prime}	11	14.0

CANDELA TABLE	
Degrees Vertical Candela 0 1587 5 1588 15 1641 25 1458 35 989 45 453 55 93 65 5 75 2 85 0 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	1280	54.5
$0-40$	1893	80.6
$0-60$	2337	99.5
$0-90$	2349	100
$90-180$	0	0
$0-180$	2349	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	35128
55	8927
65	687
75	381
85	0

| CANDLEPOWER DISTRIBUTION | | |
| :---: | :---: | :---: | :---: | :---: |
| 1300 | Downlight | |
| 1950 | | |

ZONAL LUMEN SUMMARY			LUMINANCE	
Zone	Lumens	\%Fixture	Average Candella	Average 0°
0-30	1546	54.5	Degrees	Luminance
0-40	2287	80.5	45	42439
0-60	2824	99.5	55	10791
0-90	2838	100	65	830
90-180	0	0	75	445
0-180	2838	100	85	0

CONE OF LIGHT

Distance	Initial	Beam			
Fixture to	Footcandles	Diameter			
Lighted Plane	at Nadir				
$7 \prime$	39	8			
$8 '$	30	9		45	547
:---	:---:				
55	113				
65	6				
75	2				
85	0				
90	0				

Test Number	P98631
LD6A30DE010	ERW6A30835 6LW1H
Lumens	2633 Lm
Efficacy	$60.3 \mathrm{Lm} /$ W
Watts	43.6 W
CCT	3500 K
SC	1.1

CANDELA TABLE	
Degrees Vertical Candela 0 1802 5 1795 15 1717 25 1520 35 1077 45 512 55 178 65 37 75 8 85 1 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	1347	51
$0-40$	2011	76.5
$0-60$	2579	98
$0-90$	2633	100
$90-180$	0	0
$0-180$	2633	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	47212
55	20189
65	5650
75	1966
85	973

CONE OF LIGHT

Distance Fixture to Lighted Plane	Initial Footcandles at Nadir	Beam Diameter
$7{ }^{\prime}$	37	9
8^{\prime}	28	9
9^{\prime}	22	10
10^{\prime}	18	10
12^{\prime}	12.5	13.5
15^{\prime}	8	17

EMBOD MULTIPLIER
$900 / 1000$ Lumen $=.50$
$1300 / 1500$ Lumen $=.31$
1800/2000 Lumen $=.22$
2800/3000 Lumen $=.16$

6 inch LED recessed wide beam downlight specially designed for LED technology. Two-stage reflector system produces smooth distribution with excellent light control and low aperture brightness. Lumen packages include 1000, 1500, 2000, and 3000 lumens with color temperatures of 2700K, 3000K, 3500K, 4000K.

Catalog \#	LD6A15DL3 ERW6A15835 6LW1LI	Type
Project		R3
Comments		
Prepared by		

SPECIFICATION FEATURES

Lower Shielding Reflector

Self-flanged, spun .050" thick aluminum lower reflector in combination with a lensed upper optical chamber provides superior lumen output with minimal source brightness. Available in all Portfolio Alzak ${ }^{\circledR}$ finishes.

Trim Retention

Lower reflector is retained with two torsion springs holding the flange tightly to the finished ceiling surface.

Plaster Frame / Collar

New Construction Housing: Die cast aluminum 1-1/2" deep collar accommodates ceiling materials up to $2^{\prime \prime}$.

Universal Mounting Bracket

 Accepts 1/2" EMT, C channel and bar hangers and adjusts $5^{\prime \prime}$ vertically from above and below the ceiling.
Junction Box

(4) $1 / 2^{\prime \prime}$ and (2) $3 / 4^{\prime \prime}$ trade size pry outs positioned to allow straight conduit runs. Listed for (8) \#12 AWG (four in, four out) $90^{\circ} \mathrm{C}$ conductors and feed thru branch wiring.

Thermal

Extruded aluminum heat sink conducts heat away from the LED module for optimal performance and long life.

LED

LED system contains a plurality of high brightness white LED's combined with a high reflectance upper reflector and convex transitional lens producing even distribution with no pixilation. Rated for 50,000 hours at 70% lumen maintenance. Auto resetting, thermally protected, LED's are turned off when safe operating temperatures are exceeded. Color variation within 3-step MacAdam ellipses. Flexible disconnect allows for tool-less replacement of LED engine from below ceiling. Available in 80 or 90 CRI.

Driver

Combination $120-277 \mathrm{~V} 0-10 \mathrm{~V}$ or 120 V trailing edge phase cut driver provides flicker free dimming from 100% to 10%. Optional 1\% 0-10V, Fifth Light, DMX or Lutron® Ecosystem. Driver can be serviced from above or through the aperture.

$\underset{\text { by E:ToN }}{\text { Cooper Lighting }}$
by E

EXAMPLE: LD6A15D010TE ERW6A15835 6LW1LI=6" LED Wide Reflector Lens, 1500 Lumen 3,500 K Color with Universal 120-277V, 0-10 Driver

Reflector	Finish		Options	Accessories	
6LW0=6" Wide Beam Reflector, Polymer Trim Ring 6LW1=6" Wide Beam Reflector, Self-flanged	LI=Specular Clear H=Semi-Specular Clear WMH=Warm Haze G=Specular Gold WH=Wheat WHH=Wheat Haze GP=Graphite GPH=Graphite Haze	$B=$ Specular Black W=Gloss White 6LW0 Only BB=Black Baffle WB=White Baffle	Self-flanged Only WF=White Painted Flange	HB26=C-channel Bar Hanger, 26" Long, Pair HB50=C-channel Bar Hanger, 50" Long, Pair RMB22=Wood Joist Bar Hanger, 22" Long, Pair H347=347 to 120V Step Down Transformer, 75VA H347200=347 to 120V Step Down Transformer, 200VA Housings, Specify Slope	HSA6=Slope Adapter for 6" Aperture Housings, Specify Slope TRM6=MetalTrim Ring, Specify Color ${ }^{2}$ TRR6=Rimless Trim Ring ${ }^{2}$ DT6=Deco Trim ${ }^{2}$ LGSKT6IP66=IP66 Gasket Kit

Notes: 1 Nominal delivered Lumens will vary depending on selected color, driver and reflector finish.
2 Order trim with polymer trim ring (Consult specification sheet for color ordering information and options).
3 Not available with Chicago Plenum.
4 Not CSA approved.

PHOTOMETRICS

Test Number	P98323
ERW6A835	6 LW1H
Lumens	1463
Efficacy	$65.3 \mathrm{Lm} / \mathrm{W}$
Watts	22.4
CCT	3500 K
SC	1.13

CONE OF LIGHT			55	98
Distance	Initial		65	19
Fixture to	Footcandles	$\underset{\text { Diameter }}{\text { Beam }}$	75	5
Lighted Plane	at Nadir		85	0
5'5"		6.0	90	0

CANDELA TABLE	
Degrees Candela Vertical 1008 0 1002 5 106 15 956 25 845 35 602 45 281 55 98 65 19 75 5 85 0 90 0	

ZONAL LUMEN SUMMARY		
Zone	Lumens	$\%$ Fixture
$0-30$	750	51.3
$0-40$	1122	76.7
$0-60$	1434	98
$0-90$	1463	100
$90-180$	0	0
$0-180$	1463	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	25954
55	11090
65	2964
75	1210
85	0

CANDELA TABLE	
Degrees Vertical	Candela
0	1000
5	1021
15	1142
25	1022
35	663
45	267
55	39
65	2
75	0
85	0
90	0

ZONAL LUMEN SUMMARY		
Zone	Lumens	\%Fixture
$0-30$	885	57
$0-40$	1294	83.4
$0-60$	1548	99.7
$0-90$	1552	100
$90-180$	0	0
$0-180$	1552	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	24598
55	4425
65	340
75	277
85	0

Test Number	P98615
LD6A20D010TE ERW6A835 6LW1H	
Lumens	2179
Efficacy	69.2 Lm/W
Watts	31.5
CCT	3500 K
SC	1.13

CONE OF LIGHT

Distance	Initial	Beam			
Fixture to	Footcandles	Diameter			
Lighted Plane	at Nadir				
$5^{\prime \prime}$	49	6.0			
77^{\prime}	30	7.8		424	
:---	:---				
55	147				
65	30				
75	6				
85	1				
90	0				

CANDELA TABLE	
Degrees Vertical Candela 0 1491 5 1486 15 1421 25 1258 35 891 45 424 55 147 65 30 75 6 85 1 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	\%Fixture
$0-30$	1114	51.1
$0-40$	1664	76.4
$0-60$	2134	98.0
$0-90$	2179	100
$90-180$	0	0
$0-180$	2179	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	39074
55	16709
65	4662
75	1638
85	823

Test Number	P97715
LD6A20D010TE	ERW6A835 6LW1LI
Lumens	2349
Efficacy	74.6 Lm/W
Watts	31.5
CCT	3500 K
SC	1.17

CONE OF LIGHT

Distance Fixture to Lighted Plane	Initial Footcandles at Nadir	Beam Diameter
$5^{\prime \prime} 5^{\prime \prime}$	52	6.4
7^{\prime}	32	8.0
8^{\prime}	24	9.2
9^{\prime}	19	10.4
10^{\prime}	15	11.6
12^{\prime}	11	14.0

CANDELA TABLE	
Degrees Vertical Candela 0 1587 5 1588 15 1641 25 1458 35 989 45 453 55 93 65 5 75 2 85 0 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	1280	54.5
$0-40$	1893	80.6
$0-60$	2337	99.5
$0-90$	2349	100
$90-180$	0	0
$0-180$	2349	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	35128
55	8927
65	687
75	381
85	0

| CANDLEPOWER DISTRIBUTION | | |
| :---: | :---: | :---: | :---: | :---: |
| 1300 | Downlight | |
| 1950 | | |

ZONAL LUMEN SUMMARY			LUMINANCE	
Zone	Lumens	\%Fixture	Average Candella	Average 0°
0-30	1546	54.5	Degrees	Luminance
0-40	2287	80.5	45	42439
0-60	2824	99.5	55	10791
0-90	2838	100	65	830
90-180	0	0	75	445
0-180	2838	100	85	0

CONE OF LIGHT

Distance	Initial	Beam			
Fixture to	Footcandles	Diameter			
Lighted Plane	at Nadir				
$7 \prime$	39	8			
$8 '$	30	9		45	547
:---	:---:				
55	113				
65	6				
75	2				
85	0				
90	0				

Test Number	P98631
LD6A30DE010	ERW6A30835 6LW1H
Lumens	2633 Lm
Efficacy	$60.3 \mathrm{Lm} /$ W
Watts	43.6 W
CCT	3500 K
SC	1.1

CANDELA TABLE	
Degrees Vertical Candela 0 1802 5 1795 15 1717 25 1520 35 1077 45 512 55 178 65 37 75 8 85 1 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	1347	51
$0-40$	2011	76.5
$0-60$	2579	98
$0-90$	2633	100
$90-180$	0	0
$0-180$	2633	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	47212
55	20189
65	5650
75	1966
85	973

CONE OF LIGHT

Distance Fixture to Lighted Plane	Initial Footcandles at Nadir	Beam Diameter
$7{ }^{\prime}$	37	9
8^{\prime}	28	9
9^{\prime}	22	10
10^{\prime}	18	10
12^{\prime}	12.5	13.5
15^{\prime}	8	17

EMBOD MULTIPLIER
$900 / 1000$ Lumen $=.50$
$1300 / 1500$ Lumen $=.31$
1800/2000 Lumen $=.22$
2800/3000 Lumen $=.16$

6 inch LED recessed wall wash specially designed for LED technology. Two-stage reflector system combined with a Gradient Kicker, produces high levels of uniform vertical illumination on the wall with no flashback or glare. Color temperatures of $2700 \mathrm{~K}, 3000 \mathrm{~K}, 3500 \mathrm{~K}, 4000 \mathrm{~K}$.

Catalog \#	LD6A10DL3 ERM6A10835 6LM111LI	Type	
Project		R4	
Comments			
Prepared by		Date	

SPECIFICATION FEATURES

Lower Wall Wash Reflector

 Self-flanged, spun .050" thick aluminum lower reflector in combination with a lensed upper optical chamber provides superior lumen output with minimal source brightness. Available in all Portfolio Alzak ${ }^{\circledR}$ finishes.
Trim Retention

Lower reflector is retained with two torsion springs holding the flange tightly to the finished ceiling surface.

Plaster Frame / Collar

New Construction Housing: Die cast aluminum 1-1/2" deep collar accommodates ceiling materials up to $2^{\prime \prime}$.

Universal Mounting Bracket

Accepts $1 / 2^{\prime \prime}$ EMT, C channel and bar hangers and adjusts $5^{\prime \prime}$ vertically from above and below the ceiling.

Junction Box

(4) $1 / 2^{\prime \prime}$ and (2) $3 / 4^{\prime \prime}$ trade size pry outs positioned to allow straight conduit runs. Listed for (8) \#12 AWG (four in, four out) $90^{\circ} \mathrm{C}$

> conductors and feed thru branch wiring.

Thermal

Extruded aluminum heat sink conducts heat away from the LED module for optimal performance and long life.

LED

LED system contains a plurality of high brightness white LED's combined with a high reflectance upper reflector and convex transitional lens producing even distribution with no pixilation. Rated for 50,000 hours at 70% lumen maintenance. Auto resetting, thermally protected, LED's are turned off when safe operating temperatures are exceeded. Color variation within 3-step MacAdam ellipses. Flexible disconnect allows for tool-less replacement of LED engine from below ceiling. Available in 80 or 90 CRI.

Driver

Combination $120-277 \mathrm{~V} 0-10 \mathrm{~V}$ or 120 V trailing edge phase cut driver provides flicker free dimming

TOP VIEW - NEW CONStruction

TOP VIEW - NEW CONSTRUCTION WITH BATTERY

LD6A10 LD6A15 LD6A20 LD6A30 6LM111
1000, 1500 Lumen LED 2000, 3000 Lumen LED

6-Inch

Medium Beam Wall Wash
New Construction

T24

Refer to ENERGY STAR ${ }^{\oplus}$ Qualified Products List. Can be used to comply with California Title 24 High Efficacy Title 20 Appliance Efficiency Databas

Housing	Lumens ${ }^{1}$	${ }^{1} \quad$ Driver	Options	Power Module	CRI	Color
LD6A=6" Aperture LD6ACP=6" Aperture, Chicago Plenum		$\frac{1000,1500,2000 \text { and } \mathbf{3 0 0 0} \text { Lumen }}{\text { D010TE }=120-277 \mathrm{~V} 0-10 \mathrm{~V} 10 \%}$	EMBOD=Bodine ${ }^{\text {© }}$ Emergency Module with Remote Test Switch ${ }^{3}$	ERM6A10=6", 1000 Lumen Module for Medium Beam Reflector	$8=80 \mathrm{CRI}$	$\begin{aligned} & 27=2700^{\circ} \mathrm{K} \\ & 30=3000^{\circ} \mathrm{K} \end{aligned}$
					9=90 CRI	
						$35=3500^{\circ} \mathrm{K}$
		Dimming or Trailing Edge 120V Dimming		ERM6A15=6", 1500 Lumen		$40=4000^{\circ} \mathrm{K}$
10=1000 Lumens		D5LT=Fifth Light ${ }^{\ominus}$ (DALI) Dimming 1-100\% DE010=1 to 100\% Dimming, 120-277V		Module for Medium Beam		27CP $=2700^{\circ} \mathrm{K}$, Chicago Plenum
15=1500 Lumens		$50 / 60 \mathrm{~Hz}, 0-10 \mathrm{~V}$		Reflector		$\begin{aligned} & 30 \mathrm{CP}=3000^{\circ} \mathrm{K} \text {, Chicago Plenum } \\ & 35 \mathrm{CP}=3500^{\circ} \mathrm{K} \text {, Chicago Plenum } \\ & 40 \mathrm{CP}=4000^{\circ} \mathrm{K} \text {, Chicago Plenum } \end{aligned}$
20=2000 Lumens		DL3=1 to 100\% Dimming, 120-277V Lutron ${ }^{\text {® }}$ Hi-Lume, Ecosystem or 3 Wire		ERM6A20=6", 2000 Lumen Module for Medium Beam		
30=3000 Lumens		DLT=1 to 100\% Dimming, 120V Lutron*		Reflector		
		Hi-Lume Forward Phase Dimming		ERM6A30=6", 3000 Lumen		
		DMX=DMX Dimming 1-100\%		Module for Medium Beam		
		1000, 1500 and 2000 Lumen				
		D010TR=120-277V 0-10V 10\% Dimming or Leading Edge 120V Dimming				

Notes: 1 Nominal Lumens will vary depending on selected color, driver and reflector finish.
2 Order trim with polymer trim ring (Consult specification sheet for color ordering information and options).
3 Not available with Chicago Plenum.

ENERGY

ENERGY DATA			
Sound Rating: Class A standards			
(Values at non-dimming line voltage)			
Minimum Starting Temperature: $-30^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right)$			
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)			
Input Voltage: UNV (120V-277V)			
Power Factor: >0.90 (at nominal input 120-277 VAC \& 100\% of Rated Output Power)			
3000 Lumen D010TE		2000 Lumen D010TE	
Input Power: 43.6W	THD: <17\%	Input Power: 31.5W	THD: <20\%
120V Input Current: 37A	277V Input Current. 16A	120V Input Current: 27A	277V Input Current. 12A
Maximum Non-IC Ambient Continuous		Maximum Non-IC Ambient Continuous	
Input Frequency: $50 / 60 \mathrm{~Hz}$		Input Frequency: $50 / 60 \mathrm{~Hz}$	
1500 Lumen D010TE		1000 Lumen D010TE	
Input Power: 22.4W	THD: <20\%	Input Power: 14.1W	THD: <20\%
120V Input Current: .12A	277V Input Current. .09A	120V Input Current: .12A	277V Input Current: .06A
Maximum Non-IC Ambient Continuous		Maximum Non-IC Ambient Continuous	
Input Frequency: $50-60 \mathrm{~Hz}$		Input Frequency: $50-60 \mathrm{~Hz}$	

	120V		277V	
Lumens	Inrush (A)	Duration (ms)	$\operatorname{Inrush}(\mathrm{A})$	Duration (ms)
$900 / 1000$	0.486	0.4	0.848	0.182
$1300 / 1500$	0.717	1.58	0.531	1.24
$1800 / 2000$	0.832	0.405	1.25	0.788
$2800 / 3000$	1.09	0.3	1.23	0.294

PHOTOMETRICS

PHOTOMETRICS

SINGLE UNIT FOOTCANDLES				
	$\mathbf{3}^{\prime}$ (Distance From Fixture Along Wall)			
DD		$\mathbf{1}^{\prime}$	$\mathbf{2 '}^{\prime}$	$\mathbf{3}^{\prime}$
1^{\prime}	5.8	4.9	2.4	0.9
2^{\prime}	15.0	12.4	7.5	4.0
3^{\prime}	14.3	12.7	8.5	4.8
4^{\prime}	11.9	10.7	7.5	4.5
5^{\prime}	9.1	8.6	6.6	4.1
6^{\prime}	6.5	6.3	5.6	3.9
7^{\prime}	4.7	4.7	4.3	3.5
8^{\prime}	3.5	3.5	3.3	2.9
9^{\prime}	2.7	2.7	2.6	2.4
1^{\prime}	2.1	2.1	2.1	2.0

MULTIPLE UNIT FOOTCANDLES											
2.5' FROM WALL (Spacing Between Fixtures)						3' FROM WALL (Spacing Between Fixtures)					
\bigcirc	2'	,		$3{ }^{1}$			2'		O	$3{ }^{1}$	
16.5	19.3	16.5	13.9	12.9	13.9	8.3	9.8	8.3	6.8	7.3	6.8
31.3	35.0	31.3	26.2	26.4	26.2	22.4	24.8	22.4	19.0	19.9	19.0
27.9	31.1	27.9	23.1	25.1	23.1	22.8	25.4	22.8	19.1	21.5	19.1
22.1	25.1	22.1	18.1	21.2	18.1	19.4	21.3	19.4	16.4	18.4	16.4
16.6	17.9	16.6	13.3	16.7	13.3	15.7	17.3	15.7	13.2	15.7	13.2
12.0	12.5	12.0	10.3	12.1	10.3	12.1	12.6	12.1	10.4	12.1	10.4
8.7	9.0	8.7	7.9	8.8	7.9	9.0	9.3	9.0	8.2	9.1	8.2
6.6	6.7	6.6	6.2	6.6	6.2	6.9	7.0	6.9	6.4	6.9	6.4
5.1	5.2	5.1	4.8	5.2	4.8	5.3	5.4	5.3	5.1	5.4	5.1
4.0	4.1	4.0	3.9	4.1	3.9	4.2	4.3	4.2	4.1	4.3	4.1

Test Number	P98559
LD6A20D010TE ERM6A835 6LM111H	
Lumens	2160
CCT	3500 K

SINGLE UNIT FOOTCANDLES					MULTIPLE UNIT FOOTCANDLES											
	3' FROM WALL (Distance From Fixture Along Wall)				2.5' FROM WALL (Spacing Between Fixtures)						3' FROM WALL (Spacing Between Fixtures)					
DD		$1{ }^{1}$	2'	3^{1}		2'			$3{ }^{1}$			2'			3^{1}	
1'	11	9	5	1	129	32	29	25	23	25	16	18	16	13	13	13
2^{\prime}	21	17	11	5	44	49	44	36	37	36	32	35	32	26	28	26
3^{\prime}	19	17	12	6	38	43	38	31	35	31	32	34	32	26	30	26
4	15	14	10	6	31	34	31	26	29	26	26	28	26	21	25	21
$5{ }^{\prime}$	12	12	9	6	24	26	24	20	23	20	22	24	22	18	21	18
$6{ }^{\prime}$	9	9	8	5	18	19	18	15	18	15	17	18	17	15	17	15
7'	7	7	6	5	13	14	13	12	13	12	14	14	14	12	13	12
8'	5	5	5	4	10	10	10	9	10	9	10	11	10	9	10	9
$9 '$	4	4	4	3	7	8	7	7	7	7	8	8	8	7	8	7
10^{\prime}	3	3	3	2	6	6	6	5	6	5	6	6	6	6	6	6

Test Number	P97659				
LD6A20D010TE ERM6A835 6LM111LI					
Lumens	2330				
CCT	3500 K				

SINGLE UNIT FOOTCANDLES					MULTIPLE UNIT FOOTCANDLES											
	3' FROM WALL (Distance From Fixture Along Wall)				2.5^{1} FROM WALL (Spacing Between Fixtures)						3^{1} FROM WALL (Spacing Between Fixtures)					
DD		$1{ }^{\prime}$	2'	$3{ }^{1}$		2'			31			2'			3^{1}	
$1 '$	11	8	4	1	27	29	27	23	19	23	15	16	15	12	11	12
2^{\prime}	21	18	11	5	46	51	46	38	39	38	33	36	33	27	29	27
$3 '$	21	18	12	6	41	46	41	34	37	34	33	37	33	28	31	28
4^{\prime}	18	16	11	6	35	39	35	28	33	28	29	32	29	24	27	24
$5 '$	15	13	10	6	27	29	27	22	27	22	25	27	25	21	24	21
$6{ }^{\prime}$	11	10	9	6	20	21	20	17	20	17	20	21	20	17	19	17
$7{ }^{\prime}$	8	8	7	5	15	16	15	13	15	13	15	16	15	14	15	14
8'	6	6	5	4	11	12	11	10	11	10	12	12	12	11	12	11
$9 '$	5	5	4	3	9	9	9	8	9	8	9	9	9	9	9	9
10^{\prime}	4	4	3	3	7	7	7	7	7	7	7	8	7	7	7	7

LEGEND:
0-deg:
90-deg: \qquad

Test Number	P97675
LD6A30DE010	ERM6A30835 6LM111LI
Lumens	2795 Lm
Watts	39.6 W
CCT	3500 K

SINGLE UNIT FOOTCANDLES					MULTIPLE UNIT FOOTCANDLES											
	3' FROM WALL (Distance From Fixture Along Wall)				2' FROM WALL (Spacing Between Fixtures)						3' FROM WALL (Spacing Between Fixtures)					
DD		$1{ }^{1}$	2'	3'		2'			31			21			3'	
1'	13	9.5	5	2	61	63.9	61.7	53	39	53	18	19	18	15	14	15
2^{\prime}	26	22	13	7	76.5	84.5	76.5	64	58	64	40	44	39.9	33	36	33
$3 '$	26	22	15	8	62	71	62	51.5	51	51.5	40.5	44	40.5	34	37.5	33.9
4^{\prime}	22	19.5	13	7	46	53.5	46	36.5	45	36.5	35.5	39	35.5	29	33	29
$5 '$	18	16.5	12	7	34	37	34	27	33	27	30.5	33	30.5	25	29	25
$6{ }^{\prime}$	13.5	12	10	7	24	26	24	21	24	21	24	25.5	24	21	24	21
7'	10	9	8.5	6	18	19	18	16	18	16	18	19.5	18	17	18.5	17
8'	8	7.5	7	5.5	13.5	14	13.5	12	13.5	12	14.5	15	14.5	13.5	14.5	13.5
$9 '$	6	6	5.5	4	10.5	11	10.5	9.5	10.5	9.5	11.6	11.9	11.5	11	11.5	11
10^{\prime}	5	5	4.5	4	8	8.5	8	7	8	7	9	9.5	9	9	9	9

EMBOD MULTIPLIER

900/1000 Lumen= 50
1300/1500 Lumen= .31
1800/2000 Lumen $=.22$
2800/3000 Lumen $=.16$

CCT Multiplication Factors		CCT [K]	Multiplier from 3500K	$80->90$ CRI
80 CRI	2000 Lumen	2700	0.93	
		3000	0.99	
		3500	1.00	
		4000	1.01	
90 CRI	2000 Lumen	2700	0.88	0.79
		3000	0.94	0.80
		3500	1.00	0.84
		4000	1.03	0.85

8 -inch LED recessed medium beam downlight with 50° cut off specially designed for LED technology. Two-stage reflector system produces smooth distribution with excellent light control and low aperture brightness. Offered with 3000-10,000 lumens with color temperatures of $2700 \mathrm{~K}, 3000 \mathrm{~K}, 3500 \mathrm{~K}, 4000 \mathrm{~K}$ available in 80 or 90 CRI .

Catalog \#	LD8A502DL3 ER8A50835 8LMOLI	Type	
	R7		
Project			
Comments		Date	
Prepared by			

SPECIFICATION FEATURES

Lower Shielding Reflector

Self-flanged, spun .060" thick aluminum lower reflector in combination with a lensed upper optical chamber provides superior lumen output with minimal source brightness. Available in all Portfolio Alzak ${ }^{\circledR}$ finishes.

Trim Retention

Lower reflector is retained with two torsion springs holding the flange tightly to the finished ceiling surface.

Plaster Frame / Collar

Die cast aluminum 1-1/2" deep collar accommodates ceiling materials up to $2^{\prime \prime}$.

Universal Mounting Bracket Accepts 1/2" EMT, C channel and bar hangers and adjusts $5^{\prime \prime}$ vertically from above and below the ceiling.

Junction Box

(4) $1 / 2^{\prime \prime}$ and (2) $3 / 4^{\prime \prime}$ trade size pry outs positioned to allow straight conduit runs. Listed for (8) \#12

AWG (four in, four out) $90^{\circ} \mathrm{C}$ conductors and feed thru branch wiring.

Thermal

Forged aluminum heat sink conducts heat away from the LED module for improved performance and longer life.

LED

LED system contains a plurality of high brightness white LED's combined with a high reflectance upper reflector and convex transitional lens producing even distribution with no pixilation. Rated for 50,000 hours at 70\% lumen maintenance. Color variation within 3-step MacAdam ellipses. Flexible disconnect allows for tool-less replacement of LED engine from below ceiling. Available in 80 or 90 CRI.

Driver

Combination 0-10V/trailing edge driver provides flicker free dimming from 100\% to 10\%. Optional 1\% 0-10V, Fifth Light,

DMX or Lutron ${ }^{\circledR}$ Ecosystem. Driver can be serviced from above or through the aperture.

Code Compliance

Thermally protected and cULus listed for protected wet locations. cCSAus certified. Optional City of Chicago environmental air (CCEA) marking for plenum applications. EMI/ RFI emissions per FCC 47CFR Part 18 Class B consumer limits. Non-IC rated Insulation must be kept 3" from top and sides of housing. RoHS Compliant. Photometric testing completed in accordance with IES LM 79 standards. LED life testing completed in accordance with LM 80 standards.

Warranty

5 year warranty

8-Inch Medium Downlight
New Construction

Refer to ENERGY STAR ${ }^{\oplus}$ Qualified Products List. Can be used to comply with CaliforniaTitle 24 High Efficacy requirements.

EXAMPLE: LD8A501DE010 ER8A50835 8LW111LI= 8" LED Wide Beam Reflector, 5000 Lumen, 3,500 K Color with Universal 120-277V, 0-10 Driver

Housing	Lumens ${ }^{1}$	Voltage	Driver	Options	Power Module	Lumens	CRI	Color
LD8A=8" Aperture LD8ACP=8" Aperture, Chicago Plenum	$30=3000$ Lumens $40=4000$ Lumens 50=5000 Lumens $60=6000$ Lumens 65=6500 Lumens $80=8000$ Lumens $90=9000$ Lumens $100=10000$ Lumens	$\begin{aligned} & 1=120 \mathrm{~V} \\ & \hline 2=277 \mathrm{~V} \\ & \hline \end{aligned}$	```\(3000,4000,5000,6000,8000,9000\) AND 10000 LUMEN D010TE=0-10V 10\% Dimming or Trailing Edge Dimming 3000, 4000, 5000, 6000 AND 8000 LUMEN D5LT=Fifth Light \({ }^{\text {® }}\) DALI 1\% Dimming DMX=DMX Dimming DE010=0-10V 1\% Dimming 3000, 4000, 5000 AND 6000 LUMEN DL3=1\% Lutron \({ }^{\text { }}\) Hi-Lume 3-Wire or Ecosystem D010TR=0-10V 10\% Dimming or Leading Edge 6500 LUMEN D010=0-10V 10\% Dimming DE010=0-10V 1\% Dimming```	EMBOD=Bodine* Emergency Module with Remote Test Switch IEMBOD=Bodine ${ }^{\text { }}$ Emergency Module with Integral Test Switch ${ }^{2}$	ER8A=8" Module		$\begin{array}{\|l\|} \hline 8=80 \mathrm{CRI} \\ \hline 9=90 \mathrm{CRI} \end{array}$	$\begin{aligned} & 27=2700^{\circ} \mathrm{K} \\ & 30=3000^{\circ} \mathrm{K} \\ & 35=3500^{\circ} \mathrm{K} \\ & \hline 40=4000^{\circ} \mathrm{K} \end{aligned}$

Reflector	Finish		Options	Accessories	
8LM0=8" Medium Reflector, Polymer Trim Ring	LII=Specular Clear B=Specular B H=Semi-Specular Clear W=Gloss Whi WMH=Warm Haze		Self-flanged Only WF=White Painted Flange	HB26=C-channel Bar Hanger, H347200=347 to 120V Step Down $26^{\prime \prime}$ Long, Pair Transformer, 200VA Housings, Specify HB50=C-channel Bar Hanger, Slope	
8LM1=8" Medium Reflector,					
Self-flanged	G=Specular Gold	8LM0 Only	Painted Flange	HB50 $=$ C-channel Bar Hanger, 50 " Long, Pair	HSA8=Slope Adapter for 8" Aperture
8LM0E=8" Medium Reflector,	WH=Wheat	BB=Black Baffle		50" Long, Pair RMB22=Wood Joist Bar Hanger,	Housings, Specify Slope LGSKT8IP65=IP65 Gasket Kit
Polymer Trim Ring for use with	WHH=Wheat Haze	WB=White Baffle		22" Long, Pair H347=347 to 120V Step Down	
IEM Integral Emergency option	GP=Graphite				
8LM1E=8" Medium Reflector, \quad GPH=Graphite Haze \quad Transformer, 75VA Self-flanged Trim Ring for use with	GPH=Graphite Haze			H347=347 to 120V Step Down Transformer, 75VA	
IEM Integral Emergency option					
Notes: 1. Nominal Lumens will va	y depending on selected	lor, driver and refle	or finish.		
2. Not available with Chicag	go Plenum.				
3. Not CSA approved.					
4. Trailing edge and leading	edge 120 V only.				

ENERGY DATA

ENERGY DATA	
Sound Rating: Class A standards	
(Values at non-dimming line voltage)	
Minimum Starting Temperature: $-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$	
Power Factor: >0.90	
3000 Lumen	
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)	
Input Power: 42W	THD: <20\%
120V Input Current: 35A	277V Input Current. 16A
Input Frequency: $50-60 \mathrm{~Hz}$	
4000 Lumen D010TE	
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)	
Input Power: 58W	THD: <20\%
120V Input Current: 48A	277V Input Current. 21A
Input Frequency: $50-60 \mathrm{~Hz}$	
5000 Lumen D010TE	
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)	
Input Power: 62W	THD: <17\%
120V Input Current: 52A	277V Input Current: .22A
Input Frequency: $50-60 \mathrm{~Hz}$	
6000 Lumen D010TE	
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)	
Input Power: 77W	THD: <17\%
120V Input Current: 64 A	277V Input Current: .28A
Input Frequency: $50-60 \mathrm{~Hz}$	

ENERGY dATA	
Sound Rating: Class A standards	
(Values at non-dimming line voltage)	
Minimum Starting Temperature: $20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$)	
Power Factor: >0.90	
6500 Lumen D010	
Input Power: 84W	THD: <17\%
120V Input Current: 70A	277V Input Current. 30A
Input Frequency: $50-60 \mathrm{~Hz}$	
8000 Lumen D010TE	
120V Input Power: 96W	277V Input Power: 96W
120V Input Current: 79A	277V Input Current. 36 A
THDi 120V: <13\%	THDi 277V: <20\%
Input Frequency: $50-60 \mathrm{~Hz}$	
9000 Lumen D010TE	
120V Input Power: 108W	277V Input Power: 107W
120V Input Current: 89A	277V Input Current. 39A
THDi 120V: <13\%	THDi 277V: <20\%
Input Frequency: $50-60 \mathrm{~Hz}$	
10,000 Lumen D010TE	
120V Input Power: 126 W	277V Input Power: 123W
120V Input Current: 1.05A	277V Input Current: 47A
THDi 120V: <13\%	THDi 277V: <20\%
Input Frequency: $50-60 \mathrm{~Hz}$	

PHOTOMETRICS

CANDELA TABLE	
Degrees Vertical Candela 0 6445 5 6573 15 5323 25 3488 35 1582 45 316 55 26 65 0 75 1 85 0 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	\%Fixture
$0-30$	3598	72
$0-40$	4641	93
$0-60$	4952	99
$0-90$	4962	100
$90-180$	0	0
$0-180$	4962	100

LUMINANCE	
Average Candella Degrees	Average 0° Luminance
45	13773
55	1421
65	0
75	166
85	0

CANDELA TABLE	
Degrees Vertical Candela 0 2977 5 3234 15 3611 25 3268 35 2011 45 822 55 173 65 19 75 0 85 0 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	2455	48
$0-40$	3741	74
$0-60$	4872	96
$0-90$	5035	100
$90-180$	0	0
$0-180$	5035	100

LUMINANCE
Average Candella Degrees Average 0° Luminance 45 35859 55 9275 65 1421 75 0 85 0

8-inch LED recessed wide wall wash specially designed for LED technology. Two-stage reflector system combined with a Gradient Kicker, produces high levels of uniform vertical illumination on the wall with minimal source brightness. Color temperatures of $2700 \mathrm{~K}, 3000 \mathrm{~K}, 3500 \mathrm{~K}, 4000 \mathrm{~K}$.

Catalog \#	LD8A302DL3 ER8A30835 8LW110LI	Type
	R8	
Project		
Comments		Date
Prepared by		

SPECIFICATION FEATURES

Lower Wall Wash Reflector Spun .060" thick aluminum lower reflector with gradient kicker in comblnation with a lensed upper optical chamber provides superior lumen output, high level vertical illumination with minimal source brightness. Available in all Portfolio Alzak ${ }^{\circledR}$ finishes.

Trim Retention

Reflector is retained with two torsion springs holding the flange tightly to the finished ceiling surface.

Plaster Frame / Collar Die cast aluminum 1-1/2" deep collar accommodates ceiling materials up to 2 ".

Universal Mounting Bracket Accepts 1/2" EMT, C channel and bar hangers and adjusts $5^{\prime \prime}$ vertically from above and below the ceiling (new construction housing only).

Junction Box

(4) $1 / 2^{\prime \prime}$ and (2) $3 / 4^{\prime \prime}$ trade size pry outs positioned to allow straight
conduit runs. Listed for (8) \#12 AWG (four in, four out) $90^{\circ} \mathrm{C}$ conductors and feed thru branch wiring.

Thermal

Forged aluminum heat sink conducts heat away from the LED module for improved performance and longer life.

LED

LED system contains a plurality of high brightness white LED's combined with a high reflectance upper reflector and convex transitional lens producing even distribution with no pixilation. Rated for 50,000 hours at 70\% lumen maintenance. Color variation within 3-step MacAdam ellipses. Flexible disconnect allows for tool-less replacement of LED engine from below ceiling. Available in 80 or 90 CRI.

DMX or Lutron® Ecosystem. Driver can be serviced from above or through the aperture.

Code Compliance

Thermally protected and cULus listed for protected damp locations. cCSAus certified. Optional City of Chicago environmental air (CCEA) marking for plenum applications. EMI/ RFI emissions per FCC 47CFR Part 18 Class B consumer limits. Non-IC rated Insulation must be kept 3" from top and sides of housing. RoHS Compliant. Photometric testing completed in accordance with IES LM 79 standards. LED life testing completed in accordance with LM 80 standards. 8000 lumen and above are marked spacing and must follow spacing requirements.

Warranty

5 year warranty.

Driver

Combination 0-10V/trailing edge driver provides flicker free dimming from 100% to 10%. Optional 1\% 0-10V, Fifth Light,

8-Inch Wide Beam Wall Wash New Construction

EXAMPLE: LD8A501DE010 ER8A50835 8LW111LI=8" LED Wide Beam Reflector Lens, 5000 Lumen, 3,500 K Color with Universal 120 - 277 V , 0 - 10 Driver

Reflector	Finish	Options	Accessories	
	LI=Specular Clear B=Specular Black H=Semi-Specular Clear Self-flanged Only W=Gloss White WF=White WMH=Warm Haze Painted Flange G=Specular Gold WH=Wheat WHH=Wheat Haze GP=Graphite GPH=Graphite Haze			
8LW111=8" Wide Reflector, Single Wall Wash, Self-flanged 8LW121=8" Wide Reflector, Double Wall Wash, Self-flanged			HB26=C-channel Bar Hanger, 26" Long, Pair HB50=C-channel Bar Hanger, 50" Long, Pair	H347=347 to 120V Step Down Transformer, 75VA H347200=347 to 120V Step Down Transformer, 200VA Housings, Specify
8LW110=8" Wide Reflector, Single Wall Wash, Polymer Trim Ring			RMB22=Wood Joist Bar Hanger, 22" Long, Pair	Slope
8LW120=8" Wide Reflector, Double Wall Wash, Polymer Trim Ring				
Notes: 1. Nominal Lumens will 2. Not available with Chic 3. Not CSA approved. 4. Trailing edge and leadi 5. Product is marked spac Center to Center o Center of Luminair Minimum Overhead	ry depending on selected color, driver and refl go Plenum. g edge 120 V only. ig and must be installed with the following mi adjacent luminaires : 36" to Side of Building Member : 18" Clearance: 9"	or finish. mum spacing:		

ENERGY DATA

EnERGY DATA	
Sound Rating: Class A standards	
(Values at non-dimming line voltage)	
Minimum Starting Temperature: $20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$	
Power Factor: >0.90	
3000 Lumen	
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)	
Input Power: 42W	THD: <20\%
120V Input Current: 35 A	277V Input Current. 16A
Input Frequency: $50-60 \mathrm{~Hz}$	
4000 Lumen D010TE	
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)	
Input Power: 58W	THD: <20\%
120V Input Current: 48 A	277V Input Current: .21A
Input Frequency: $50-60 \mathrm{~Hz}$	
5000 Lumen D010TE	
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)	
Input Power: 62W	THD: <17\%
120 V Input Current: 52 A	277V Input Current. 22A
Input Frequency: $50-60 \mathrm{~Hz}$	
6000 Lumen D010TE	
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)	
Input Power: 77W	THD: <17\%
120V Input Current: 64 A	277V Input Current. 28A
Input Frequency: $50-60 \mathrm{~Hz}$	

ENERGY DATA	
Sound Rating: Class A standards	
(Values at non-dimming line voltage)	
Minimum Starting Temperature: $-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$	
Power Factor: >0.90	
6500 Lumen D010	
Input Power: 84W	THD: <17\%
120V Input Current: 70A	277V Input Current. 30 A
Input Frequency: $50-60 \mathrm{~Hz}$	
8000 Lumen D010TE	
120V Input Power: 96W	277V Input Power: 96W
120V Input Current. .79A	277V Input Current. 36 A
THDi 120V: <13\%	THDi 27TV: <20\%
Input Frequency: $50-60 \mathrm{~Hz}$	
9000 Lumen D010TE	
120V Input Power: 108W	277V Input Power: 107W
120V Input Current: 89A	277V Input Current. 39 A
THDi 120V: <13\%	THDi 277V: <20\%
Input Frequency: $50-60 \mathrm{~Hz}$	
10,000 Lumen D010TE	
120V Input Power: 126W	277V Input Power: 123W
120V Input Current: 1.05A	277V Input Current. .47A
THDi 120V: <13\%	THDi 277V: <20\%
Input Frequency: $50-60 \mathrm{~Hz}$	

Test Number	P112727
LD8A50D010TE	ER8A50835 8LM0LI
Lumens	5035 Lm
CCT	3500K

SINGLE UNIT FOOTCANDLES					MULTIPLE UNIT FOOTCANDLES											
	3^{1} FROM WALL (Distance From Fixture Along Wall)				2.5' FROM WALL (Spacing Between Fixtures)						3' FROM WALL (Spacing Between Fixtures)					
DD		1'	2'	$3{ }^{1}$		21			31			2'			$3{ }^{1}$	
1^{\prime}	1	1	0	0	2	2	2	1	1	1	1	1	1	1	,	1
2^{\prime}	8	5	2	1	30	32	30	27	18	27	10	11	10	9	7	9
3^{\prime}	32	25	12	4	79	88	79	66	61	66	44	50	44	36	36	36
4^{\prime}	43	36	22	10	87	97	87	70	78	70	64	72	64	53	59	53
5^{\prime}	39	35	25	14	73	80	73	61	70	61	64	69	64	53	60	53
$6{ }^{\prime}$	31	29	23	15	54	58	54	47	53	47	54	57	54	46	52	46
$7{ }^{\prime}$	23	22	19	14	39	41	39	35	38	35	42	43	42	37	41	37
$8{ }^{\prime}$	17	16	14	12	28	29	28	26	28	26	31	32	31	29	31	29
$9{ }^{\prime}$	13	12	11	10	21	21	21	20	20	20	24	24	24	22	23	22
10^{\prime}	10	9	8	8	16	16	16	15	15	15	18	18	18	17	18	17

Test Number	P113111
LD8A50D010TE ER8A50835 8L110H	
Lumens	4800 Lm
CCT	3500 K

SINGLE UNIT FOOTCANDLES					MULTIPLE UNIT FOOTCANDLES											
	3' FROM WALL (Distance From Fixture Along Wall)				2.5' FROM WALL (Spacing Between Fixtures)						3' FROM WALL (Spacing Between Fixtures)					
DD		$1{ }^{\prime}$	2'	3'		2'			$3{ }^{1}$			2'			3^{1}	
1'	3	2	1	0	8	8	8	7	5	7	4	4	4	3	3	3
2^{\prime}	16	12	6	2	42	45	42	36	30	36	22	23	22	18	18	18
$3 '$	33	26	14	6	77	86	77	65	61	65	47	51	47	39	39	39
4	40	34	21	10	80	90	81	65	73	65	61	68	61	50	56	50
5^{\prime}	35	32	24	14	64	71	66	54	62	55	58	64	59	49	56	49
$6{ }^{\prime}$	27	25	21	15	47	50	47	41	46	42	47	51	48	41	46	42
$7{ }^{\prime}$	20	19	16	13	33	35	33	30	33	30	36	38	36	32	35	33
8'	14	14	12	11	24	25	24	22	24	22	27	28	27	25	26	25
$9 '$	11	10	9	8	18	18	18	17	17	17	20	21	20	19	20	19
10^{\prime}	8	8	7	7	13	14	13	13	13	13	15	16	15	15	15	15

8-inch LED recessed wide downlight specially designed for LED technology. Two-stage reflector system produces smooth distribution with excellent light control and low aperture brightness. Lumen packages include 3000-10,000 lumens with color temperatures of 2700K, 3000K, 3500K, 4000K. Suitable for commercial construction and can be used to comply with California Title 24 non-residential requirements (with designated trims).

Catalog \#	LD8A302DL3 ER8A30835 8LW0LI	Type
Project		R9
Comments		
Prepared by		Date

SPECIFICATION FEATURES

Lower Shielding Reflector

 Self-flanged, spun .060" thick aluminum lower reflector in combination with a lensed upper optical chamber provides superior lumen output with minimal source brightness. Available in all Portfolio Alzak ${ }^{\circledR}$ finishes.
Trim Retention

Lower reflector is retained with two torsion springs holding the flange tightly to the finished ceiling surface.

Plaster Frame / Collar
Die cast aluminum 1-1/2" deep collar accommodates ceiling materials up to $2^{\prime \prime}$.

Universal Mounting Bracket Accepts 1/2" EMT, C channel and bar hangers and adjusts $5^{\prime \prime}$ vertically from above and below the ceiling.

Junction Box

(4) $1 / 2^{\prime \prime}$ and (2) $3 / 4^{\prime \prime}$ trade size pry outs positioned to allow straight conduit runs. Listed for (8) \#12

AWG (four in, four out) $90^{\circ} \mathrm{C}$ conductors and feed thru branch wiring.

Thermal

Forged aluminum heat sink conducts heat away from the LED module for improved performance and longer life.

LED

LED system contains a plurality of high brightness white LED's combined with a high reflectance upper reflector and convex transitional lens producing even distribution with no pixilation. Rated for 50,000 hours at 70\% lumen maintenance. Color variation within 3-step MacAdam ellipses. Flexible disconnect allows for tool-less replacement of LED engine from below ceiling. Available in 80 or 90 CRI.

Driver

Combination 0-10V/trailing edge driver provides flicker free dimming from 100\% to 10\%. Optional 1\% 0-10V, Fifth Light,

DMX or Lutron® Ecosystem. Driver can be serviced from above or through the aperture.

Code Compliance

Thermally protected and cULus listed for protected wet locations. cCSAus certified. Optional City of Chicago environmental air (CCEA) marking for plenum applications. EMI/ RFI emissions per FCC 47CFR Part 18 Class B consumer limits. Non-IC rated Insulation must be kept 3" from top and sides of housing. RoHS Compliant. Photometric testing completed in accordance with IES LM 79 standards. LED life testing completed in accordance with LM 80 standards.

Warranty

5 year warranty.

8-Inch Wide Beam Downlight
New Construction

Refer to ENERGY STAR ${ }^{\circledR}$ Qualified Products List. Can be used to comply with California Title 24 High Efficacy requirements.

EXAMPLE: LD8A501DE010 ER8A50835 8LW1LI=8" LED Wide Beam Reflector Lens, 5000 Lumen, 3,500 K Color with Universal 120 - 277 V , 0 - 10 Driver

Housing	Lumens ${ }^{1}$	Voltage	Driver	Options	Power Module	Lumens	CRI	Color
LD8A=8" Aperture LD8ACP=8" Aperture, Chicago Plenum	$\mathbf{3 0 = 3 0 0 0}$ Lumens $40=4000$ Lumens $50=5000$ Lumens $\mathbf{6 0}=6000$ Lumens $\mathbf{6 5}=6500$ Lumens $\mathbf{8 0}=8000$ Lumens $90=9000$ Lumens $\mathbf{1 0 0}=10000$ Lumens	$\begin{aligned} & 1=120 \mathrm{~V} \\ & \hline \mathbf{2}=277 \mathrm{~V} \\ & \hline \end{aligned}$	3000, 4000, 5000, 6000, 8000, 9000 AND 10000 LUMEN D010TE=0-10V 10\% Dimming or Trailing Edge Dimming 3000, 4000, 5000, 6000 AND 8000 LUMEN D5LT=Fifth Light ${ }^{\oplus}$ DALI 1\% Dimming DMX=DMX Dimming DE010=0-10V 1\% Dimming 3000, 4000, 5000 AND 6000 LUMEN DL3=1\% Lutron ${ }^{\text {r }}$ Hi-Lume 3-Wire or Ecosystem D010TR=0-10V 10\% Dimming or Leading Edge 6500 LUMEN D010=0-10V 10\% Dimming DE010=0-10V 1\% Dimming	EMBOD=Bodine ${ }^{\oplus}$ Emergency Module with Remote Test Switch ${ }^{2}$ IEMBOD=Bodine ${ }^{\text {® }}$ Emergency Module with Integral Test Switch ${ }^{2}$	ER8A $=8$ " Module $\mathbf{3 0}=3000$ Lumens $40=4000$ Lumens $50=5000$ Lumens $60=6000$ Lumens $65=6500$ Lumens $80=8000$ Lumens $90=9000$ Lumens $100=10000$ Lumens		$\begin{aligned} & 8=80 \mathrm{CRI} \\ & \hline 9=90 \mathrm{CRI} \end{aligned}$	$\begin{aligned} & 27=2700^{\circ} \mathrm{K} \\ & 30=3000^{\circ} \mathrm{K} \\ & 35=3500^{\circ} \mathrm{K} \\ & \hline 40=4000^{\circ} \mathrm{K} \end{aligned}$

Reflector	Finish		Options	Accessories	
8LW0=8" Wide Reflector, Polymer Trim Ring 8LW1=8" Wide Reflector, Self-flanged 8LW0E=8" Wide Reflector, Polymer Trim Ring for use with IEM Integral Emergency option 8LW1E=8" Wide Reflector, Self-flanged Trim Ring for use with IEM Integral Emergency option	LI=Specular Clear H=Semi-Specular Clear WMH=Warm Haze G=Specular Gold WH=Wheat WHH=Wheat Haze GP=Graphite GPH=Graphite Haze	B=Specular Black W=Gloss White	Self-flanged Only WF=White Painted Flange	HB26=C-channel Bar Hanger, 26" Long, Pair HB50=C-channel Bar Hanger, 50" Long, Pair RMB22=Wood Joist Bar Hanger, 22" Long, Pair H347=347 to 120V Step Down Transformer, 75VA	H347200=347 to 120V Step Down Transformer, 200VA Housings, Specify Slope HSA8=Slope Adapter for 8" Aperture Housings, Specify Slope LGSKT8IP65=IP65 Gasket Kit

Notes: 1. Nominal Lumens will vary depending on selected color, driver and reflector finish.
2. Not available with Chicago Plenum.
3. Trailing edge and leading edge 120 V only.

ENERGY DATA

ENERGY DATA	
Sound Rating: Class A standards	
(Values at non-dimming line voltage)	
Minimum Starting Temperature: $-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$	
Power Factor: >0.90	
3000 Lumen	
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)	
Input Power: 42W	THD: <20\%
120V Input Current: 35A	277V Input Current. 16A
Input Frequency: $50-60 \mathrm{~Hz}$	
4000 Lumen D010TE	
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)	
Input Power: 58W	THD: <20\%
120V Input Current: 48A	277V Input Current. 21A
Input Frequency: $50-60 \mathrm{~Hz}$	
5000 Lumen D010TE	
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)	
Input Power: 62 W	THD: $<17 \%$
120V Input Current: 52A	277V Input Current. 22A
Input Frequency: $50-60 \mathrm{~Hz}$	
6000 Lumen D010TE	
EMI/RFI: FCC Title 47 CFR, Part 15, Class B (Consumer)	
Input Power: 77W	THD: <17\%
120V Input Current: 64A	277V Input Current: .28A
Input Frequency: $50-60 \mathrm{~Hz}$	

ENERGY DATA	
Sound Rating: Class A standards	
(Values at non-dimming line voltage)	
Minimum Starting Temperature: $-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$	
Power Factor: >0.90	
6500 Lumen D010	
Input Power: 84W	THD: <17\%
120V Input Current: 70A	277V Input Current. 30 A
Input Frequency: $50-60 \mathrm{~Hz}$	
8000 Lumen D010TE	
120V Input Power: 96W	277V Input Power: 96W
120V Input Current: .79A	277V Input Current. 36 A
THDi 120V: <13\%	THDi 277V: <20\%
Input Frequency: $50-60 \mathrm{~Hz}$	
9000 Lumen D010TE	
120V Input Power: 108W	277V Input Power: 107W
120V Input Current: 89A	277V Input Current. 39 A
THDi 120V: <13\%	THDi 277V: <20\%
Input Frequency: $50-60 \mathrm{~Hz}$	
10,000 Lumen D010TE	
120V Input Power: 126W	277V Input Power: 123W
120V Input Current: 1.05A	277V Input Current. 47A
THDi 120V: <13\%	THDi 277V: <20\%
Input Frequency: $50-60 \mathrm{~Hz}$	

PHOTOMETRICS

Test Number	P110167
LD8A50D010TE ER8A50835 8LW0LI	
Lumens	5083 Lm
Efficacy	$81.9 \mathrm{Lm} / \mathrm{W}$
CCT	3500 K
SC	1

CANDELA TABLE

Degrees Vertical	Candela
0	3304
5	3395
15	3658
25	3398
35	2268
45	967
55	203
65	18
75	1
85	0
90	0

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	2740	54
$0-40$	4147	81
$0-60$	5052	99
$0-90$	5083	100
$90-180$	0	0
$0-180$	5083	100

CONE OF LIGHT

Distance	Initial	Beam		
Fixture to	Footcandles			
Lighted Plane	at Nadir	Diameter		
12.5^{\prime}	22	15		
15^{\prime}	15	18		
	18		\quad	55
:---				
65				
75				
85				
90				
18				

| LUMINANCE |
| :---: | :---: |
| Average Candela
 Degrees Average 0°
 Luminance
 45 42170
 55 10921
 65 1320
 75 166
 85 0 |

CANDELA TABLE	
Degrees Vertical Candela 0 3200 5 3288 15 3542 25 3291 35 2196 45 936 55 197 65 18 75 1 85 0 90 0	

ZONAL LUMEN SUMMARY

Zone	Lumens	$\%$ Fixture
$0-30$	2478	51
$0-40$	3754	78
$0-60$	4696	98
$0-90$	4790	100
$90-180$	0	0
$0-180$	4790	100

LUMINANCE	
Average Candela Degrees	Average 0° Luminance
45	40840
55	10577
65	1278
75	161
85	0

5-year warranty

3×3
TED iolghing
LED

[^5]Label references $72^{\prime \prime}$ raye fixture in V2HO 3000K. Lighting Facts for additional beam spreads and light output levels may be obtained from io Lighting.
raye G2
0 . 08 . 35KV2HO . 1
72
3"H X 3.6"W
Application
raye Generation 2 (G2) is today's answer to high performance cove applications. Available in a $3^{\prime \prime} \times 3^{\prime \prime}$ housing ($2^{\prime \prime} \times 6$ " housing also available), much of the extruded aluminum heat sinking (required for Raye Gen 1) has been removed enabling a cost reduction while maintaining superior thermal management. io utilizes the highest efficacy LEDs and tightest Binning (2-step MacAdam). raye Gen 2 is the high-performance, affordable answer to new and retrofit cove applications. While exceeding T8 \& T5 high performance alternatives, raye's optical assembly has been designed to uniformly illuminate the interior surfaces of the cove while offering a very precise asymmetric beam projection. Now field adjustable, the fixture can be tilted up to illuminate various types of ceiling conditions (i.e. barrel vaults). An LED tray can removed in the field via a quick disconnect for future maintenance without disrupting the permanent installation. The driver is also easily accessible for future maintenance. Projected average rated life is 50,000 hours at 70% of lamp lumen output. io utilizes LEDs that are compliant with LM 80 standards. Ambient temperature surrounding the fixture shall not exceed $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$.

Light Output

raye is available with four lumen outputs for white light only. All values listed below represent initial lumens. LM79 IES format files are available on the Cooper website. io only delivers high quality white light solutions with 2 -step Binning. $80+$ CRI is standard. For $90+$ CRI, please consult factory for pricing and lead-time.
>> 2-step MacAdam Binning.

	Standard Output	Mid Output	Very High Output	V2HO
INITIAL LUMENS				
2700K White:	$342 \mathrm{Ims} / \mathrm{ft}$	$456 \mathrm{Ims} / \mathrm{ft}$	$661 \mathrm{Ims} / \mathrm{ft}$	$684 \mathrm{Ims} / \mathrm{ft}$
3000K White:	$384 \mathrm{Ims} / \mathrm{ft}$	$512 \mathrm{Ims} / \mathrm{ft}$	$742 \mathrm{Ims} / \mathrm{ft}$	$768 \mathrm{Ims} / \mathrm{ft}$
3500K White:	$390 \mathrm{Ims} / \mathrm{ft}$	$520 \mathrm{Ims} / \mathrm{ft}$	$754 \mathrm{Ims} / \mathrm{ft}$	$780 \mathrm{Ims} / \mathrm{ft}$
4000 K White:	$414 \mathrm{Ims} / \mathrm{ft}$	$552 \mathrm{Ims} / \mathrm{ft}$	$800 \mathrm{Ims} / \mathrm{ft}$	$828 \mathrm{Ims} / \mathrm{ft}$
POWER CONSUMPTION*				
	$4.80 \mathrm{w} / \mathrm{ft}$	$6.40 \mathrm{w} / \mathrm{ft}$	$9.60 \mathrm{w} / \mathrm{ft}$	$10.56 \mathrm{w} / \mathrm{ft}$

Non-standard color temperatures available as a custom offering for a modest additional cost and lead-time. * Power Consumption dos not include power supply losses.

Construction

raye's wireway housing is die formed 20 gauge prime cold rolled steel. The wireway is $17.1^{\prime \prime}$ in length for both the 18 "\& $72^{\prime \prime}$ fixtures. Knockouts are provided for $1 / 2^{\prime \prime}$ conduit fittings. Wiring components and Drivers are mounted to a one piece back housing, permitting removal of the cover for ease of maintenance. An anodized aluminum channel which houses the LED tray and optic is mechanically fastened to a metal channel that runs the length of the fixture.

Mounting Options

raye is designed to be surface mounted within an architectural cove for indirect illumination. For a uniform distribution (with no socket shadows) of light fixtures should be mounted end-toend.

Electrical

All fixtures are pre-wired and pre-assembled for easy installation. Electronic drivers (universal power supplies, $120-277 \mathrm{v}$) are integral within the sheet metal wire way housing for both the 18 " and 72" units.

Finish

White powder coat paint finish is standard.

3KV2HO - 72" Length

LIGHT OUTPUT CONVERSION TABLE

	Standard Output	High Output	Very High Output	V2H0
2700K White	$\mathbf{0 . 4 4 ~}^{(1)}$	$\mathbf{0 . 7 2 ~}^{(1)}$	$\mathbf{0 . 9 5}^{(1)}$	$\mathbf{1 . 4 0}^{(1)}$
3000K White	$\mathbf{0 . 4 7 ~}^{(1)}$	$\mathbf{0 . 7 5 ~}^{(1)}$	$\mathbf{1 . 0 0}^{(1)}$	$\mathbf{1 . 4 7}^{(1)}$
3500K White	$\mathbf{0 . 4 8}^{(1)}$	$\mathbf{0 . 7 7}^{(1)}$	$\mathbf{1 . 0 3}^{(1)}$	$\mathbf{1 . 5 1}^{(1)}$
4000K White	$\mathbf{0 . 4 7 ~}^{(1)}$	$\mathbf{0 . 7 5 ~}^{(1)}$	$\mathbf{1 . 0 0}^{(1)}$	$\mathbf{1 . 4 7}^{(1)}$

Visit www.iolighting.com or contact an io representative for IES format photometrics.

NEW: FIELD ADJUSTABLE ILLUMINATION ANGLES

10" MOUNTING DISTANCE

Ceiling Height	2^{\prime}	4'	$6{ }^{1}$	8'	10'	12^{\prime}
11'-6" (3.51m)	25.5 fc	26.3fc	25.5 fc	23.5 fc	22.4fc	22.2fc
10'-6" (3.20m)	26.8fc	27.3fc	25.4fc	22.9fc	20.9fc	20.4fc
9'-6" (2.90m)	28.5fc	28.3fc	24.8fc	21.5fc	19.1fc	18.5fc
8'-6" (2.59m)	32.5 fc	32.2fc	27.2 fc	21.9 fc	18.0fc	17.3fc

*Calculations based on 3KV2HO LEDs.

Application Notes

- For cove applications, there should not be less than 6" of lampless (fixtureless) space at the end of all run lengths.
- For cove applications, raye luminaires shall be butted end to end to eliminate any opportunity for socket shadows.
- For ease of maintenance, the Printed Circuit Board (PCB) Assembly may be removed from the all raye housings via a quick disconnect and a removable extruded aluminum sliding tray (which contains the PCB). This can be accomplished without removing the wireway which is connected to line voltage.

Note: Adjustable tab rotates fixture in 5 degree increments.
(91.4 mm)
72

5 \quad| L |
| :--- |
| 6 |

Order Code

1. SERIES	
08	raye Gen 2
2.	COLOR
27K	White $2700 \mathrm{~K} \mathrm{S0}{ }^{(1)}$
27KHO	0 White 2700K H0 ${ }^{(1)}$
27 KVHO	HO White $2700 \mathrm{~K} \mathrm{VH0}{ }^{(1)}$
27 KV 2 HO	2 HO White $2700 \mathrm{~K} \mathrm{~V} 2 \mathrm{HO}{ }^{(1)}$
3K	White 3000K S0 ${ }^{(1)}$
3KHO	White $3000 \mathrm{~K} \mathrm{HO}{ }^{(1)}$
3KVHO	0 White $3000 \mathrm{~K} \mathrm{VH0}{ }^{(1)}$
3 KV 2 HO	W White 3000K V2HO ${ }^{(1)}$

$$
35 K
$$

35K White 3500K SO 35KHO White 3500K HO ${ }^{(1)}$ 35KVHO White 3500K VHO ${ }^{(1)}$ 35KV2HO White 3500K V2HO ${ }^{(1)}$ $4 \mathrm{~K} \quad$ White $4000 \mathrm{~K} \mathrm{SO}{ }^{(1)}$ 4KHO White $4000 \mathrm{~K} \mathrm{HO}^{(1)}$ 4KVHO White $4000 \mathrm{~K} \mathrm{VHO}^{(1)}$ 4 KV 2 HO White $4000 \mathrm{~K} \mathrm{V2HO}{ }^{(1}$ CC Custom Color ${ }^{(2)}$

3. MOUNTING

C33 Cove 3" $\times 3$
Note: $2^{\prime \prime} \times 6^{\prime \prime}$ profile
also available

4. FINISH	
1	White
5. LENGTH	

FOR CONTINUOUS ROW Specify length (e.g., 51'-0") Note: Overall length must be multiples of 72" and 18" lengths.
6. VOLTAGE / DIMMING

ND Non-Dimming (120-277v)
D $\quad 0-10 \mathrm{~V}(0 \mathrm{sram})^{(3)}$
DALI DALI (Osram) ${ }^{(3)}$
DMX DMX (Osram) ${ }^{(3)}$
L Lutron Hi-lume A-Series

1. White light variance between LEDs is equal to or better than 3-step MacAdam Binning
2. Non-standard color temperature and CRI are available. Consult factory for availability. 3. Consult factory for other dimming driver options.

You Tube

- LED asymmetric distribution
- Extruded aluminum housing
- Die-cast aluminum end-caps
- Die-cast adjustable mounting arms
- Alanod ${ }^{\circledR}$ MIRO® 4 aluminum reflector
- Extruded, lightly diffused acrylic lens standard
- Electrostatically applied polyester powder coat paint finish

Catalog \# A02-SI-A-2-LED-35K-277-S-AK12-D	Type	
Project		
Comments		Date
Prepared by		

SPECIFICATION FEATURES

Construction

Housing is corrosion-resistent Type 6063-T6 aluminum extrusion with die-cast aluminum end caps. End caps are secured by concealed stainless steel fasteners. Housing, end caps and lens are sealed with single, closed cell slicone gaskets. Stainless steel hardware is standard.

Reflector

Reflector is constructed from highly specular Alanod® MIRO® 4 aluminum with minimum 95\% reflectance.

Aiming

Fixture includes the PointGrab2 TM lockable aiming system, providing minimum 180 degree vertical adjustment of the fixture housing in 5 degree increments. The aiming feature locks securely in place by means of a stainless steel locking mechanism.

Lens

A lightly diffused acrylic lens is standard, constructed of impact-resistent, U.V. stabilized virgin acrylic to prevent discoloration.

Electrical

LED fixtures use .92 power factor UL 1310 Class 2 AC to DC driver with built-in dimming. Integral LED lamp modules are easily replacable in the field.

Mounting

Fixture includes Slide-N-Mount TM adjustable, lockable mounting arms (patent pending), constructed from Type 383 die-cast aluminum. Support structure by others.

Finish

Fixture housing is finished using electrostactically applied polyester powdercoat paint. Consult factory for custom colors.

Labels

UL / cUL listed for use in damp locations.

ARROWLINEAR LED

Extra Small Integral Individual Linear

Lamp Chart

Lamp Source	* Light Level 2: Absolute Lumens	Nominal Fixture Length	Actual Fixture Length	$* * * * ~ R e c o m m e n d e d ~$ Mounting Centers
LED	1000	1^{\prime}	$13-1 / 2^{\prime \prime}(343 \mathrm{~mm})$	${ }^{* *}$ See note below
LED	2000	2^{\prime}	$27-3 / 8^{\prime \prime}(695 \mathrm{~mm})$	$22-13 / 16^{\prime \prime}(580 \mathrm{~mm})$
LED	3000	3^{\prime}	$39-3 / 16^{\prime \prime}(995 \mathrm{~mm})$	$34-5 / 8^{\prime \prime}(880 \mathrm{~mm})$
LED	4000	4^{\prime}	$51^{\prime \prime}(1295 \mathrm{~mm})$	$46-7 / 16^{\prime \prime}(1180 \mathrm{~mm})$
LED	6000	6^{\prime}	$77-7 / 16^{\prime \prime}(1967 \mathrm{~mm})$	$72-29 / 32^{\prime \prime}(1852 \mathrm{~mm})$
LED	8000	8^{\prime}	$101-1 / 6^{\prime \prime}(2567 \mathrm{~mm})$	$96-17 / 32^{\prime \prime}(2452 \mathrm{~mm})$
LED	12,000	12^{\prime}	$151-3 / 16^{\prime \prime}(3839 \mathrm{~mm})$	$* * * 146-7 / 16(3719 \mathrm{~mm})$

* Based on 3500K CCT. See photometric files at www.ametrixlighting.com for delivered lumen levels.
** 1' fixtures utilize a single, centered RC3 mounting arm.
*** 12' fixtures require three mounting points.
**** Slide-N-Mount ${ }^{\text {TM }}$ adjustable, lockable mounting arms are standard.

ORDERING INFORMATION

Specifications and Dimensions subject to change without notice.

The geometric form of MESA LED luminaire allows it to adapt to either contemporary or traditional architectural settings. Available in single or twin pole mount configurations with optional wall mounting capability, the MESA LED luminaire's mounting options allow for harmonized site design whether at the entryway or in the parking lot. UL/cUL listed for use in wet locations.

Catalog \#	MSA-C01-LED-E1-T3-GM	
Type		
Comments		
Prepared by		

SPECIFICATION FEATURES

Construction

HOUSING: Die-cast aluminum main housing and spider mount base maintain a minimum 0.125 wall thickness. Integral aluminum heat sink provides superior thermal heat transfer in $+40^{\circ} \mathrm{C}$ ambient environments. DOOR ASSEMBLY: Top mounted, heavy wall, diecast aluminum door maintains a nominal 0.125 thickness. Door includes a self-retaining interior hinge. GASKET: Continuous silicone gasket provided to seal housing door assembly and optic tray. LENS: Downlight lens is LED board integrated acrylic overoptics, each individually sealed for IP66 rating. HARDWARE: Four iinset fasteners on underside of housing provide access to luminaire interior. Concealed, stainless steel four bar hinge lock allows door to lock in the open position.

Optics

DISTRIBUTION: Choice of twelve patented, high-efficiency AccuLED Optics ${ }^{\text {TM }}$, featuring designs that maximize light collection and directional distribution onto the application region. Each optical lens is precision manufactured via injection-molding then precisely arranged and sealed on the board
media. LEDs: High output LEDs, $60,000+$ hours life at $>90 \%$ lumen maintenance, offered standard in $4000^{\circ} \mathrm{K}$ (+/- 275 K) CCT and nominal 70 CRI. Mesa LightBAR optic tray is removable and able to rotate 360° in 90° increments for specific placement of the distribution relative to fixture.

Electrical

DRIVER: LED drivers are potted and heat sunk for optimal performance and prolonged life. Standard drivers feature electronic universal voltage $(120-277 \mathrm{~V} / 50-60 \mathrm{~Hz})$, greater than 0.9 power factor, less than 20% harmonic distortion and feature ambient temperature range of $+40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ down to minimum starting temperature of $-30^{\circ} \mathrm{C}$ $\left(-22^{\circ} \mathrm{F}\right)$. Shipped standard with Cooper Lighting proprietary circuit module designed to withstand 10kV of transient line surge. All LED LightBARs ${ }^{T M}$ and drivers are mounted to dedicated mounting trays and are easily replaced by use of quick disconnects for ease of wiring. Driver tray is removable without the use of tools. Options to control light levels, energy savings and egress capabilities (battery pack and separate circuit) are available.

Mounting

Fitter assembly mounts over $3^{\prime \prime}$ O.D. tenon and is secured via three concealed stainless steel set screws. Design of fitter provides seamless transition to $4^{\prime \prime}$ round poles. Additional mounting accessories include a dual fixture post top mounting arm and wall mount arm.

Finish

Housing is finished in five-stage super TGIC polyester powder coat paint, 2.5 mil nominal thickness for superior protection against fade and wear. LightBAR ${ }^{\text {TM }}$ cover plates are standard white and may be specified to match finish of luminaire housing. Standard colors include black, bronze, grey, white, dark platinum and graphite metallic. RAL and custom color matches available. Consult Outdoor Architectural Colors brochure for a complete selection.

Warranty
Five-year warranty.

1-6 LightBARs
Solid State LED

DECORATIVE LUMINAIRE

CERTIFICATION DATA
UL/cUL Listed
ISO 9001
IP66 LightBARs
LM79 / LM80 Compliant
2G Vibration Tested
DesignLights Consortium® Qualified*

ENERGY DATA
Electronic LED Driver
>0.9 Power Factor
<20\% Total Harmonic Distortion $120-277 \mathrm{~V} / 50$ \& $60 \mathrm{~Hz}, 347 \mathrm{~V} / 60 \mathrm{~Hz}$, $480 \mathrm{~V} / 60 \mathrm{~Hz}$
$-30^{\circ} \mathrm{C}$ Minimum Temperature
$40^{\circ} \mathrm{C}$ Ambient Temperature Rating
EPA
Effected Projected Area
1.1 Sq. Ft.

SHIPPING DATA
Approximate Net Weight:
50 lbs . (22.7 kgs.)

POWER AND LUMENS BY BAR COUNT

Number of LightBARs	Distribution													
	Power (Watts)	$\begin{aligned} & \text { Current @ } \\ & \text { 120V (A) } \end{aligned}$	$\begin{aligned} & \text { Current @ } \\ & \text { 277V (A) } \end{aligned}$	T2	T3	T4	SL2	SL3	SL4	5MO	5WQ	5X0	RW	SLR/SLL
	7 LED LIGHTBAR													
C01	27	0.23	0.13	1,708	1,709	1,668	1,718	1,668	1,675	1,845	1,770	1,791	1,701	1,609
C02	54	0.46	0.21	3,291	3,294	3,215	3,311	3,214	3,228	3,556	3,412	3,451	3,277	3,102
C03	77	0.65	0.29	4,751	4,755	4,641	4,779	4,640	4,660	5,133	4,925	4,982	4,731	4,478
C04	101	0.86	0.37	6,270	6,276	6,125	6,308	6,124	6,151	6,775	6,500	6,575	6,244	5,910
C05	131	1.11	0.50	7,508	7,515	7,334	7,553	7,333	7,365	8,112	7,783	7,873	7,477	7,076
C06	154	1.30	0.58	9,086	9,094	8,875	9,140	8,874	8,913	9,817	9,419	9,528	9,048	8,563
	21 LED LIGHTBAR													
B01	27	0.23	0.13	2,101	2,102	2,052	2,113	2,052	2,061	2,269	2,177	2,203	2,092	1,980
B02	51	0.43	0.20	4,048	4,052	3,954	4,072	3,954	3,971	4,374	4,196	4,245	4,031	3,815
B03	73	0.62	0.28	5,844	5,849	5,708	5,879	5,707	5,732	6,314	6,058	6,128	5,820	5,507
B04	95	0.81	0.35	7,712	7,720	7,534	7,759	7,533	7,566	8,333	7,995	8,087	7,681	7,269
B05	124	1.05	0.48	9,235	9,243	9,021	9,290	9,020	9,059	9,978	9,573	9,684	9,197	8,703
B06	146	1.24	0.56	11,176	11,186	10,917	11,243	10,915	10,963	12,075	11,585	11,719	11,130	10,533

LUMEN MULTIPLIER

LUMEN MAINTENANCE

Ambient Temperature	Lumen Multiplier
$10^{\circ} \mathrm{C}$	1.04
$15^{\circ} \mathrm{C}$	1.03
$25^{\circ} \mathrm{C}$	1.00
$40^{\circ} \mathrm{C}$	0.96

Ambient Temperature	TM-21 Lumen Maintenance $(60,000$ Hours)	Theoretical L70 (Hours)
$25^{\circ} \mathrm{C}$	$>94 \%$	$>350,000$
$40^{\circ} \mathrm{C}$	$>93 \%$	$>250,000$
$50^{\circ} \mathrm{C}$	$>90 \%$	$>170,000$

ORDERING INFORMATION

Sample Number: MSA-A06-LED-E1-T3-GM

Product Family ${ }^{1}$	Number of LightBARs ${ }^{2,3}$	Lamp Type	Volt		Distribution	Color ${ }^{4}$
MSA=Mesa	B01=(1) 21 LED LightBAR B02=(2) 21 LED LightBARs B03=(3) 21 LED LightBARs B04=(4) 21 LED LightBARs B05=(5) 21 LED LightBARs B06=(6) 21 LED LightBARs C01=(1) 7 LED LightBAR C02=(2) 7 LED LightBARs C03=(3) 7 LED LightBARs C04=(4) 7 LED LightBARs C05=(5) 7 LED LightBARs C06=(6) 7 LED LightBARs	LED=Solid State Light Emitting Diodes	$\begin{array}{\|l\|} \hline \text { E1=Electronic }(120-277 \mathrm{~V}) \\ \hline 347=347 \mathrm{~V} \\ 480=480 \mathrm{~V} \end{array}$		T2=Type II Area T3=Type III Area T4=Type IV Short SL2=Type II w/Spill Control SL3=Type III w/Spill Control SL4=Type IV w/Spill Control RW=Rectangular Wide 5MQ=Type V Square Medium 5WQ=Type V Square Wide 5XO=Type V Square Extra Wide SLL $=90^{\circ}$ Spill Light Eliminator Left SLR $=90^{\circ}$ Spill Light Eliminator Right	$\begin{aligned} & \text { AP=Grey } \\ & \text { BZ=Bronze } \\ & \text { BK=Black } \\ & \text { DP=Dark Platinum } \\ & \hline \text { GM=Graphite Metallic } \\ & \hline \text { WH=White } \end{aligned}$
Options (Add as Suffix)				Accessories (Order Separately) ${ }^{9}$		
PC=Button Type Photocontrol (Specify Voltage) R=NEMA Twistlock Photocontrol Recepetacle 2L=Two Circuits ${ }^{5}$ LCF=LightBAR Cover Plate Matches Housing Finish 7060=70 CRI / 6000K CCT ${ }^{6}$ 8030 $=80 \mathrm{CRI} / 3000 \mathrm{~K} \mathrm{CCT}^{6}$ ICB=Integral Cold Weather Battery Pack (Specify 120 or 277 V) ${ }^{7}$ DIMRF-LW=LumaWatt Wireless Sensor, Wide Lens for 8' - 16' Mounting Height ${ }^{8}$ DIMRF-LN=LumaWatt Wireless Sensor, Narrow Lens for 16 ' -40^{\prime} Mounting Height ${ }^{8}$				VA6028-XX=Dual Mount Arm (EPA 1.38) VA6029-XX=Wall Mount Arm OA/RA1016=NEMA Photocontrol - Multi-Tap OA/RA1027=NEMA Photocontrol - 480V OA/RA1201=NEMA Photocontrol - 347V MA1253=10kV Circuit Module Replacement		

Notes:

1. DesignLights Consortium ${ }^{\oplus}$ Qualified. Refer to www.designlights.org Qualified Products List under Family Models for details.
2. Standard 4000 K CCT and nominal 70 CRI.
3. 21 LED LightBAR powered at $350 \mathrm{~mA}, 7$ LED LightBAR powered at 1 A .
4. Cutsom and RAL color matching available upon request. Consult your Eaton's Cooper Lighting business representative for more information.
5. Low-level output varies by bar count. Consult factory. Not availalbe with 347 V or 480 V . Requires quantity two or more LightBARs.
6. Consult factory for lead times and lumen multiplier.
7. Available with B01-B04 or C01-C04 configurations only. Specify 120 V or 277 V . LED cold weather integral battery pack is rated for minimum operating temperature $-40^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right)$. Operates one LightBAR for $90-$ minutes.

Not available in all configuration, consult factory. Rated for use in $25^{\circ} \mathrm{C}$ ambient.
8. LumaWatt wireless sensors are factory installed and require network components RF-EM1-, RF-GW1 and RF-ROUT1 in appropriate quantities. See www.cooperlighting.com for LumaWatt application information.
9. Replace XX with color designation.

1-year warranty

LED

Light Output (Lumens)	512
Watts	12.4
Lumens per Watt (Efficacy)	41

Color Accuracy
Color Rendering Index (CRI)

[^6][^7]
|uxrail"'
 INTERIOR/EXTERIOR APPLICATIONS
 0.06.SSS.1.PMC.NR.ASYM.35K.GB3.4

Application

ANSI and ADA compliant, Iuxrail is an indoor/outdoor LED-based handrail that delivers functional illumination. Three intensities may be specified: standard output, mid output, and high output. The standard light output version delivers illuminance levels appropriate for exterior applications (2 footcandles at grade) as well as for dark interior environments with low ambient illumination levels (e.g., themed environments, theatres and residential areas). The high output version delivers illuminance levels applicable to interior environments - providing in excess of 10 footcandles along the path of egress (ANSI required for stair treads). Independent photometric test reports and IES Format data are available at www.iolighting.com.
luxrail's standard handrail gripping surfaces are circular in cross section and meet 2004 ADAAG (Americans with Disability Act Accessibility Guidelines). Patented optical assemblies deliver $10^{\circ}, 25^{\circ}$, and 55° beam spreads, as well as an asymmetric option. The 25° and 55° beam patterns are most suitable for illuminating pathways, while the 10° beam spread offers accent lighting for optional glass or stainless steel cable railing infills. Reference page 54 of this catalog for information regarding infill options. Projected average rated life is 50,000 hours at 70% of lamp lumen output. Contact factory for IES LM-80 compliance. To ensure proper performance, architectural details should allow for ventilation and air flow around the fixture. Ambient temperature surrounding the fixture shall not exceed $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$.

Light Output

Three luminous intensities are available for white light. All values below represent the initial raw lumens of the LED. IES format photometry of Lighting Facts labels represent actual light output measured in lumens and candle power. Light output losses include optical, thermal and power supply inefficiencies. IES LM-79 format files may be obtained from the factory or downloaded from www.iolighting.com. Results are typical measurements. For $90+$ CRI, please consult factory for pricing and availability.

		Standard Output	Mid Output	High Output
	2700K White:	72 Ims/ft	181 Ims/ft	253 Ims/ft
	3000K White:	$81 \mathrm{lms} / \mathrm{ft}$	$203 \mathrm{lms} / \mathrm{ft}$	284 Ims/ft
	3500K White:	$83 \mathrm{lms} / \mathrm{ft}$	206 Ims/ft	289 Ims/ft

Non-standard color temperatures available as a custom offering for a modest additional cost and lead-time.

Construction

luxrail may be post mounted or wall mounted. io recommends installation be completed by a qualified handrail installer. Mounting hardware (post or wall) is typically required up to 5' O.C., depending on the handrail alloy. Final post and wall bracket spacing must be determined by a licensed architect or structural engineer. Iuxrail is available in stainless steel and aluminum. Vandal resistant access chamber allows units to be removed for maintenance purposes. The LED light fixture inside the caprail is UL Listed for wet locations. Handrail alloy options include stainless steel and aluminum. Contact factory for maintenance guidelines.

All handrail component parts are engineered for quick installation. Field welding or cutting is typically not required. All parts are prefabricated to field dimensions and are assembled in the field with mechanical connection or epoxy. Contact io Lighting for recommended handrail installers.

Electrical

luxrail houses a low voltage LED-based light fixture that is integrated into the underside of the handrail. 24 volt 100 watt power supplies are provided as a standard. For detailed information regarding daisy chain limitations, remote distance limitations, power supply options, and dimming options consult the io website (www.iolighting.com) or an io representative.

Driver Remote Distance

71-0" (2.1m) w/22 AWG
18'-0" (5.5m) w/18 AWG
46'-0" (14.0m) w/14 AWG
71'-0" (21.6m) w/12 AWG
Dimming modules must be specified separately. For detailed information download the power supply specification sheet from www.iolighting.com.

Power Consumption

Power consumption does not include power supply losses.

Standard Output	Mid Output	High Output
$1.02 \mathrm{w} / \mathrm{ft}$	$2.54 \mathrm{w} / \mathrm{ft}$	$3.81 \mathrm{w} / \mathrm{ft}$

LIGHT OUTPUT - 55 DEGREE WARM WHITE

Calculation assumes $12^{\prime} 0^{\prime \prime}$ run length. All footcandle values are initial.

POST MOUNT APPLICATION

Note: Will depend on alloy and diameter specifications.

22 AWG, 300v power cord Power cord for secondary feed. Wire gauge as required for remote driver.

Wal mounted luxrail may be mounted to new or existing guardrail (by others)

Post and wall bracket spacing must be determined by a licensed architect or structural engineer.
io Lighting recommends a qualified handrail installer be on site during install.

LIGHT OUTPUT CONVERSION TABLE

	Standard Output	$\begin{gathered} \text { Mid } \\ \text { Output } \end{gathered}$	High Output
2700K White	$0.25{ }^{(1)}$	$0.69{ }^{(1)}$	$0.94{ }^{(1)}$
3000K White	$0.27^{(1)}$	$0.73{ }^{(1)}$	$1.00{ }^{(1)}$
3500K White	$0.29^{(1)}$	$0.78{ }^{(1)}$	$1.06{ }^{(1)}$

Note: Visit www.iolighting.com or contact an io representative for IES format photometrics.

WM (WALL MOUNT INTERMEDIATE)

GLASS INFILL
(glass provided by others)

STAINLESS STEEL CABLE INFILL

> 1. Power Supply Specification Sheet may be downloaded from www.iolighting.com.
2. Each handrail application will be custom to accommodate varying field conditions and
design requirements. Shop drawings will be required to manage specifics of each handrail section.
3. White light variance between IFDs is equal to or better than 3-step MacAdam Binning.
4. Stainless Steel cable available for flat surfaces only.
5. Detailed elevation drawings of handrail section are required for quote.
6. Non-standard color temperature and CRI are available. Consult factory for availability.

Appendix B - Supporting Material for Acoustical Breadth

References

ASHRAE. (2013). Standard 90.1-2013 Energy Standard for Buildings Except Low-Rise Residential Buildings.

DiLaura, D. L., Mistrick, R. G., Houser, K. W., \& Steffy, G. R. (2011). Illuminating Engineering Society The Lighting Handbook: Reference and Application Tenth Edition. New York, NY: Illuminating Engineering Society of North America.

IDA-IES. (2011). Model Lighting Ordinance. Illuminating Engineering Society and International Deark Sky Association.

Long, M. (2014). Architectural Acoustics Second Edition. Amsterdam:
Elsevier/Academic.
Mehta, M., Johnson, J., \& Rocafort, J. (1999). Architectural Acoustics: Principles and Design. Upper Saddle River, NJ: Prentice Hall.

Rasmussen, N. (2012). Review of Four Studies Comparing Efficiency of AC and DC Distribution for Data Centers. White Paper 151. Schneider Electric.

[^0]: *denotes assumed value

[^1]: ${ }^{2}$ (Long, 2014)

[^2]: 2246 5th Street, Berkeley, CA 94710 . Tel: 510.845.2760 • Fax: 510.845.2776 • Email: techsupport@peerlesslighting.com • PeerlessLighting.com

[^3]: 2246 5th Street, Berkeley, CA 94710 • Tel: 510.845.2760 • Fax: 510.845.2776 • Email: techsupport@peerlesslighting.com • PeerlessLighting.com

[^4]: 2246 5th Street, Berkeley, CA 94710 . Tel: 510.845.2760 • Fax: 510.845.2776 • Email: techsupport@peerlesslighting.com • PeerlessLighting.com

[^5]: All results, except LED Lumen Maintenance, are according to IESNA LM-79-2008: Approved Method for the Electrical and Photometric Testing of Solid-State Lighting The U.S. Department of Energy (DOE) verifies product test data and results.
 ** See www.lightingfacts.com/products for details
 Registration Number: PNE4-GEJS2H (7/11/2013)
 Model Number: 0.08.3KV2HO.C33.1.72
 Type: Cove light

[^6]: All results, except LED Lumen Maintenance, are according to IESNA LM-79-2008: Approved Method for the Electrical and Photometric Testing of Solid-State Lighting. The U.S. Department of Energy (DOE) verifies product test data and results.
 ** See www.lightingfacts.com/products for details.
 Registration Number: PNE4-KCVONN (7/11/2013)
 Model Number: 0.03.1.3КHO.55.1.06.2
 Type: Outdoor path/step/rail light

[^7]: Label references $36^{\prime \prime}$ luxrail fixture with a 55° beam spread in High Output 3000K. Lighting Facts for additional beam spreads and light output levels may be obtained from io Lighting.

